
UG3 Computability and Intractability (2009-2010): Note 4

§4. Bells and whistles. In defining a formal model of computation we in-
evitably make a number of essentially arbitrary design decisions. These decisions
should not affect the class of languages that can be recognized within the model.
One way of gaining confidence in a particular model is to demonstrate that ex-
tending the model in various ways does not add to the class of languages that can
be recognized. We consider here four simple extensions to the Turing machine of
Note 3, and show that none of these extensions adds extra power to the model in
this sense. In carrying out this programme, we encounter the important technique
of simulation: to show that two models have equivalent power, we demonstrate
that the ostensibly more restricted model may simulate any computation within
the more general model.

§4.1. Doubly infinite tape. A Turing machine, M , with doubly infinite tape
is formally identical in its specification to the singly infinite version defined in
Note 3. However a configuration of M is now of the form αqβ, where α is a
sequence of tape symbols which is infinite to the left, and β is a sequence of
tape symbols infinite to the right. (Formally, the elements of α are indexed by
the negative integers: . . . ,−3,−2,−1.) The ‘one step’ relation ` can be defined
by analogy with the corresponding relation in Note 3. Observe that it is now
impossible for the head to drop off the left hand end of the tape, as the tape no
longer has a left hand end. All but a finite number of symbols in α and β are
blanks, so, just as before, we can make the configurations of M finite by stripping
away leading and trailing blanks. The initial configuration of M and the criterion
for acceptance are unchanged from Note 3.

The generalization to a doubly infinite tape adds no extra power to our model
of computation.

Lemma 4.1 A language L is accepted by a Turing machine with doubly infinite
tape if and only if L is accepted by a Turing machine with singly infinite tape.

proof. The ‘if’ part is easy. Suppose L is accepted by a Turing machine M̂ with
singly infinite tape. Then L is also accepted by the doubly infinite machine M
that first writes a special symbol onto the tape just to the left of the input word
and then behaves exactly as M̂ . If the head of M ever re-encounters the special
symbol, then M immediately halts and rejects.

Now we tackle the ‘only if’ part. Suppose L is accepted by the Turing machine
M = (Q, Γ, Σ, b̄ , qI , qF , δ) with doubly infinite tape. We show how to construct

a machine M̂ = (Q̂, Γ̂, Σ̂, ̂̄b, q̂I , q̂F , δ̂ ) with singly infinite tape which accepts L.
Imagine that the squares of the doubly infinite tape of M are indexed by integers,
with the input word starting at tape square 0. Fold the tape about the middle of

21



· · · s−5 s−4 s−3 s−2 s−1 s0 s1 s2 s3 s4 s5 · · ·

The tape of M

$ s−1 s−2 s−3 s−4 s−5 · · ·
s0 s1 s2 s3 s4 s5 · · ·

The tape of M̂

Figure 3: Simulation of a Turing machine with doubly infinite tape

square 0 so that squares i and −i, for all i, are brought into alignment. In essence
the machine M̂ works by simulating the operation of M using the (singly infinite)
folded tape.

Refining this idea, we can think of the tape of M̂ as having two tracks, the upper
track representing the tape squares of M with negative index, and the lower track
representing those with positive index. The first tape square on the upper track
contains a special symbol $ which is not in the tape alphabet Γ of M . Figure 3 is
intended to suggest the correspondence between the tapes of M and M̂ . It should
seem plausible that M̂ can be constructed so as to simulate the computation of M ,
move for move. Informally, the technique is the following. When the tape head
of M is over a square with positive index i, the head of M̂ is over square i of its
tape, reading from the lower track. When the tape head of M is over a square with
negative index −i, the head of M̂ is also over square i, but this time reading from
the upper track; in this mode, M̂ always moves its head in the opposite direction
to the head of M .

On this occasion only, we shall flesh out the informal argument by provid-
ing a formal description of the simulating machine M̂ . By doing this we shall
conclusively demonstrate that a Turing machine with doubly infinite tape can be
converted, in an entirely mechanical way, into an equivalent machine with only
singly infinite tape. The states, tape alphabet and input alphabet of M̂ are as
follows:

Q̂ = {q̂I , q̂F} ∪ (Q× {0, 1}),
Γ̂ = Γ × (Γ ∪ {$}),
Σ̂ = Σ × { b̄} ⊂ Γ̂.

Aside from the initial and final states (which are special) the states of M̂ are pairs
of the form 〈q, 0〉 or 〈q, 1〉, where q is a state of the simulated machine M . The in-
terpretation of state 〈q, 0〉 (respectively, state 〈q, 1〉) is that the simulated machine
is in state q and is scanning a tape square with positive (respectively, negative)

index; i.e., the simulating machine M̂ is reading from the lower (respectively, up-

22



per) track of its tape. The tape symbols of M̂ are pairs of the form 〈s0, s1〉, where

s0 ∈ Γ is to be interpreted as the symbol on the lower track of M̂ ’s tape, and
s1 as the symbol on the upper track. The input symbols are elements of Γ̂ in
which the second component of the pair is the blank symbol. Note that there is
an obvious correspondence between elements of Σ̂ and Σ14. Naturally enough, the
blank symbol of M̂ is the pair ̂̄b = 〈 b̄ , b̄〉.

Finally, the transition function δ̂ of M̂ is defined by rules (1)–(5) below. The
ordering of rules is significant: the earlier rules take precedence over the later ones.
(There is a parallel here with function definition by patterns in the programming
language Haskell.)

(1) Transitions from the initial state:

δ̂(q̂I , 〈s, b̄〉) =

{
(〈q′, 0〉, 〈s′, $〉, R), if δ(qI , s) = (q′, s′, R);
(〈q′, 1〉, 〈s′, $〉, R), if δ(qI , s) = (q′, s′, L).

[The special symbol $ is written to mark the end of the tape while, simulta-
neously, the first move of M is simulated.]

(2) Transitions to the final state:

δ̂(〈qF , · 〉, 〈s0, s1〉) = (q̂F , 〈s0, s1〉, R).

[If M enters its accepting state, then M̂ enters its accepting state on the
following move.]

(3) Transitions when M is scanning square 0:

δ̂(〈q, · 〉, 〈s, $〉) =

{
(〈q′, 0〉, 〈s′, $〉, R), if δ(q, s) = (q′, s′, R);
(〈q′, 1〉, 〈s′, $〉, R), if δ(q, s) = (q′, s′, L).

[If the head of M moves right the simulation is continued on the lower track,
otherwise on the upper track.]

(4) Transitions when M is scanning a square with positive index:

δ̂(〈q, 0〉, 〈s0, s1〉) =

{
(〈q′, 0〉, 〈s′0, s1〉, L), if δ(q, s0) = (q′, s′0, L);
(〈q′, 0〉, 〈s′0, s1〉, R), if δ(q, s0) = (q′, s′0, R).

14Strictly speaking the machine M̂ does not accept the same language as M but rather the
language {〈x, b̄〉 | x ∈ L}. However we could extend the alphabet of M̂ by throwing in the
symbols of Σ and adding a pre-processing phase to M̂ that checks the input string is from Σ∗

and converts it to the ‘paired’ form required; after that the machine behaves as described in the
proof.

23



(5) Transitions when M is scanning a square with negative index:

δ̂(〈q, 1〉, 〈s0, s1〉) =

{
(〈q′, 1〉, 〈s0, s

′
1〉, R), if δ(q, s1) = (q′, s′1, L);

(〈q′, 1〉, 〈s0, s
′
1〉, L), if δ(q, s1) = (q′, s′1, R).

[Note that M̂ must move its head in the opposite direction to that of M .]

This completes the formal description of M̂ . Note that the construction of M̂
from M is a purely mechanical process. �

Most people will agree that specifying simulations at this level of detail is quite
tedious. Although it is instructive to carry out one or two proofs with this formal-
ity, little is gained from repeating the exercise many times. Indeed the formalism
merely serves to obscure the idea of the proof. In future, then, we shall present
proofs more informally; our growing intuition about Turing machines will assure
us that the details could, in principle, be filled in on request.

§4.2. Several tapes. A k-tape Turing machine has a finite control and k heads,
each scanning a separate (singly infinite) tape. In a single transition, the machine
performs the following sequence of actions, depending on the current state of the
finite control, and on the k tape symbols scanned by the tape heads:

1. the finite control moves to a new state;

2. each tape head prints a new symbol on the tape square it currently scans;

3. each tape head moves (independently) one square left or right.

Initially, the input appears left justified on the first tape, and the other tapes
are all blank. All tape heads are positioned at the leftmost square of each tape.
The most important detail in the formal definition is that the transition function δ
maps Q×Γk to Q×(Γ×{L, R})k, which says that each transition is determined by
the state and the k-tuple of currently scanned symbols, with independent actions
(symbol written and direction of movement) for each of the tapes.

Lemma 4.2 If a language L is accepted by a k-tape Turing machine for some k,
then it is accepted by a single-tape Turing machine.

proof. Let M be a k-tape Turing machine which accepts the language L. We
shall construct a single tape Turing machine M̂ which simulates the operation
of M . We shall imagine that M̂ ’s tape is divided into 2k tracks, two tracks for
each tape of M . One track is used to record the contents of the corresponding tape
of M . The other track is blank except that one square is marked by the special
symbol ∧; this head marker points out the square which is being scanned by the

24



s0 s1 s2 s3 s4 s5 · · ·
∧

t0 t1 t2 t3 t4 t5 · · ·
∧

The tapes of M

s0 s1 s2 s3 s4 s5 · · ·
b̄ ∧ b̄ b̄ b̄ b̄ · · ·
t0 t1 t2 t3 t4 t5 · · ·
b̄ b̄ b̄ b̄ ∧ b̄ · · ·

The tape of M̂

Figure 4: Simulation of a 2-tape machine

corresponding tape head of M . The first action of M̂ is to print a composite
symbol, containing k of these head markers, onto the first square of its tape.
[Questions: formally, what is the tape alphabet of M̂? the input alphabet? the
blank symbol?] Figure 4 is intended to convey the arrangement of the single tape

of M̂ and its correspondence with the k tapes of M .
In simulating a single move of M , the machine M̂ has to perform a sequence of

moves. The current state of M is always recorded in M̂ ’s finite control. Each move
of M is simulated by performing a sweep from the leftmost head marker to the
rightmost, followed by a sweep from the rightmost head marker to the leftmost.
In the left to right sweep, M̂ makes a note, in its finite control, of all k symbols
scanned by the simulated machine M . By keeping a note of the number of head
markers encountered during the sweep (again in the finite control) the sweep can
be terminated as soon as the rightmost head marker has been reached.

The machine M̂ now has all the information necessary to simulate a single
step of M ; this it does during the right to left sweep. As each head marker is
encountered, M̂ alters the tape symbol corresponding to that marker, and moves
the marker left or right as appropriate. Again, by counting the head markers as
they are encountered, the sweep can be terminated as soon as the leftmost marker
has been reached. Finally, M̂ moves to a new state to reflect the new state of M .
If the new state of M is an accepting state then M̂ accepts. �

Lemma 4.2 will prove useful to us later. It is often easier to construct a Turing
machine to perform a certain task if we allow ourselves to use a number of work
tapes, each with a specified function. Lemma 2 assures us that any machine we
construct in this way could, in principle, be transformed into a one-tape machine.

25



§4.3. Other variants. A two-dimensional Turing machine is one that has a
two-dimensional array or page of squares, in place of the one-dimensional array of
squares we have been calling a tape. The page has has a definite top-left corner,
but is unbounded below and to the right. The transitions of the two-dimensional
machine are similar to those of the conventional one-dimensional machine, except
that the tape head can now move one square up, down, left, or right at each step,
rather like a crippled15 king in chess. The two-dimensional machine corresponds
more closely to hand computation using a sheet of paper; however, it has no greater
power than a one-dimensional machine:

Lemma 4.3 If a language L is accepted by a two-dimensional Turing machine,
then L is accepted by a one-dimensional Turing machine.

Again the proof, which is omitted, involves simulating the computation of an
arbitrary two-dimensional machine on a one-dimensional machine.

Finally, we might attempt to increase the power of the basic model by adding
extra tape heads. This mirrors the ability of a human beings to shuffle the pages
they are working on, and observe different symbols in widely separated parts of
the manuscript simultaneously, or at least in quick succession. A k-head Turing
machine is similar to the basic model except that it is equipped with k heads each
moving independently of each other. Using a simulation similar to that employed
in the proof of Lemma 4.2, it is not difficult to show the following:

Lemma 4.4 If a language L is accepted by a k-head Turing machine, then L is
accepted by a one-head Turing machine.

It is reassuring that the model we have chosen to work with is robust, i.e., is
not affected by minor modifications to the definition. Indeed, we would have to
discard the model if this turned out not to be the case.

15In chess, a king can also move along the diagonals.

26


