
UG3 Computability and Intractability (2010-2011): Note 1

§1. General introduction. It is our intention in this course to study the
fundamental nature of computation. A prerequisite for this study is a formal model
of computation. This model should reflect our intuitive notion of computation:
the things which can be computed within the formal model should be precisely
the things we imagine to be ‘computable’. We will study one such model in
some detail later but before that we will see that it is possible to obtain some
far reaching conclusions armed only with general considerations; a formal model
acts as a safety check that we have not been kidding ourselves. In the first part
of the course we will be concerned with what can be computed in principle and
will address concerns about efficiency (what can be computed in practice) in the
second part.

§1.1. Brief history. Notions of computing have been present in mathematical
thinking for a very long time. An algorithm is a specific sequence of instructions
for carrying out a task, where the instructions do not require any guesswork or
‘intelligence’ in their performance1. The earliest known algorithms were found on
Babylonian tablets dating from 3000–1500 B.C. These algorithms are fairly crude
and boring. Indeed there is no use of conditional tests so that the same basic
algorithm is repeated as often as needed to cover different cases. There is also no
use of negative numbers or of 0.

The next known algorithm is the famous one given by Euclid in Book 7, Propo-
sitions 1 and 2 of his Elements. This gives the familiar method of finding the
greatest common divisor of two natural numbers. Again the algorithm does not
use conditional tests but it does use iteration.

Perhaps the next most interesting development was provided by the 19th cen-
tury mathematician Charles Babbage who designed two machines for computation.
In Babbage’s times navigation tables were very important but could only be pro-
duced by hand calculations. The people carrying out the calculations were called
computers and were mostly sedate country clergymen augmenting the rewards of
saving souls with the rather more tangible rewards of number crunching. Natu-
rally such tables were prone to error. Babbage often had to check for these errors
and got thoroughly sick of this drudgery. He therefore designed his difference en-
gine which could calculate the tables via the method of differences. He eventually
managed to get the government of the day to put up some finance to build this
machine. It was part way through this process that he had the brilliant idea for

1The fact that the word algorithm is a close anagram of the Greek–derived word logarithm
caused confusion to some etymologists. In fact the word is derived from the name of the 9th cen-
tury Arab scholar Mohammed ibn–Musa al–Khowarizmi (it appears the change was via algorism
to algorithm). It was he who introduced our present day word algebra through his Al–jabr wa’l
muqabalah.

1



Printer

Store Mill +,−, ∗, /
Variable Cards

Operation Cards

�

�

Figure 1: Schematic architecture of Babbage’s analytical engine.

his analytical engine. The difference engine could not be programmed in anything
resembling our meaning of the word, whereas the analytical engine’s design and
basic capabilities were remarkably like those of the modern day computer; see Fig-
ure 1. However the resemblance should not be overemphasized, e.g., it lacked the
idea of a stored program; instructions were given on cards and data on separate
variable cards. Babbage’s major collaborator in developing the method of pro-
gramming for his invention was Ada Augusta, Countess of Lovelace, a daughter
of Lord Byron, the famous dissolute poet. Sadly neither of Babbage’s two engines
was ever completed; the major obstacle was that all the parts were mechanical.

Impressive as Babbage’s achievement was, it cannot be claimed that he made
any great inroads in understanding the notion of computability as a process; he
was motivated by a rather specific set of problems and devoted to a particular
design. The first major developments in understanding the fundamental nature of
computability came in the 1930s and 1940s, the culmination of work that started
around the turn of the 20th century. To a large extent these developments were
motivated by Mathematical Logic and attempts by Hilbert and others to develop
decision procedures for mathematics. The problem was: given a mathematical
statement, decide whether or not it is provable2. Here the word ‘decide’ is trou-
blesome and this led logicians and mathematicians to provide formal definitions
of what it means to decide (as well as prove) something. Various definitions were
proposed and remarkably they all turned out to be equivalent: anything decidable
by one method was decidable by any of the others. One of the most interesting
proposals was by Alan Turing who defined a class of abstract machines, now named
after him. Turing’s definition of a ‘decidable problem’ was: a problem is decidable
if there is a Turing machine which when given a description of the problem as input
eventually halts with one of two possible outputs, one output meaning ‘yes’ and

2The real aim was to decide the truth of a statement; as we will see there is a gap between
(formal) proof and truth.

2



the other ‘no’ (of course it is a requirement that the output must be the correct
answer). Remarkably enough, Turing was able to show that there are problems
that are undecidable; this is not due to a lack of power in his machines, which are
as powerful as any existing computer and can simulate standard logical reasoning.

Other developments of this period include Church’s Lambda Calculus, Post’s
Production Systems, Zuse’s Plan Calculus and the General Recursive Functions.

§1.2. Notation and conventions. For the sake of convenience we will express
our notions of computation in textual terms (programs). However our discussion
is not limited to software; it applies to any device that satisfies the few assump-
tions that we make and can express the behaviour described. We will assume
that each program can be described as a string over some agreed alphabet A.
Moreover inputs and outputs consist of a string over the same alphabet A (clearly
multiple input and output can be catered for under this assumption, e.g., by re-
serving a special character to separate components in the case of multiple inputs or
outputs—what goes wrong if we simply concatenate multiple inputs or outputs?).
It is reasonable to insist that A is finite (we will revisit this point in Note 2).
In fact there is no gain to be made by allowing infinite countable alphabets3: an
alphabet { a0, a1, a2, . . . } can be viewed as a subset of strings over the two ‘letter’
alphabet { a, ′ } where a0 is represented by a, a1 by a′ etc. Since numbers are
an indispensable part of computing we will assume that we have an agreed way
to represent them using our alphabet, e.g., we might assume that A contains the
digits 0, 1, . . . , 9.

We could proceed to list a few general assumptions but instead we will rely
on straightforward intuition and comment on those assumptions that we do make
on the way. First of all we require that our notion of computation has the ability
to generate a list P0, P1, P2, . . . that consists of all valid programs4, i.e., there
is a program G (for Generator) that on input n outputs Pn. This assumption
essentially relies on the idea that in any general notion of programming we have a
program that given an input string S can decide if S is a valid program. To generate
the entry Pn of the list P0, P1, P2, . . . we systematically enumerate all strings one
after the other testing each one to see if it is a valid program; we output Pn as
soon as we have have found n + 1 valid programs. (Of course the process just

3A set is said to be countable if it can be put into 1–1 correspondence with the set of natural
numbers. We will discuss this further in §1.5.

4Note: Validity here should not be confused with correctness. All that we require is that a
given string should be of the appropriate format. For example n(n+1)/2 is a valid mathematical
expression while n(n + 1/2 is not; we know and claim nothing as regards the ‘correctness’ of the
valid expression since we have not given any interpretation for it. If we also claim that the valid
expression is the value of the sum 1+2+ · · ·+n then we are in a position to claim its correctness
as well. If on the other hand we claim that it is the value of the sum 1 + 2 + · · ·+ n2 then it is
incorrect but still a valid expression.

3



described is hardly a model of efficiency but in principle at least it does the job.
Considerations of efficiency at this stage are hardly relevant since we are trying to
set up a system in which we can then discuss such finer points.) Having chosen
a method of enumerating all programs we call m the index of the program Pm.
We can also generate all possible strings I0, I1, I2 . . . over the alphabet A; these
represent all possible inputs (and outputs). In fact we will encode all input strings
as integers; this step is not necessary but it simplifies some points (note that we do
not encode outputs). Such an encoding is quite easy to find: if A = { a1, . . . , am }
set ai = i. Then we encode the empty string as 0 and a non-empty string b0b1 . . . bn

as b0m
n + b1m

n−1 + · · · + bn. It is easy to see that for each string there is one
natural number code and conversely for each natural number there is exactly one
string corresponding to it.

§1.3. Non-termination. According to the discussion so far, what we require
from a computational process is that we can take an input and transform it to
an appropriate output: in mathematical terms we are dealing with functions. Of
course we might regard certain strings as being inappropriate inputs for a particular
process but we can cater for this by reserving a special character that is output
when such strings are supplied. Thus we are in a situation where we want to be
able to produce devices (programs) that can take in a string and eventually output
a string, at which point they terminate. The key question we wish to address is
the following: what do we mean by claiming that such a function is computable?
We want to provide an answer that is independent of current technology, i.e., an
inherent characterization of the notion of computability.

The preceding discussion shows that one feature that would clearly be desirable
is to have a general theory of computation in which all programs are guaranteed
to terminate and produce an output5. Suppose now that we can formulate such a
theory and consider the following reasonable program description6:

on input n let R be the output of program Pn on n;
if R = I0 then return I1 else return I0;

Surely any general theory of programming should be able to express the given
description: (i) in the first line we can obtain Pn by running G on input n (there

5We might justifiably object that for certain programs termination is undesirable, e.g., oper-
ating systems. However this is not a serious objection since our aim can be modified to that of
having a general theory in which programs designed to produce an output always terminate and
then introduce explicit features for non-termination. If this is possible then we have the happy
situation whereby we can tell if a program terminates just at a glance.

6It is vital not to confuse such descriptions with actual programs. All a description does is
specify the task to be carried out; it does not prescribe how it is to be done. An actual program
for a task need not look anything like the description; all that is required is that the program
produces the correct output for each input.

4



is also the reasonable assumption that we can then ‘run’ Pn within our program,
which is effectively an assumption about compositionality); (ii) the second line
assumes that we can test for equality of strings and carry out a conditional action.
Assuming that we do indeed have a general theory of programming, there must
be at least one program in the list P0, P1, P2, . . . that expresses the above program
description7; call this program Pm. Let S be the output of Pm when it is run with
input m. If S = I0 then according to the description the output must be I1 which
is clearly not possible since I0 6= I1. So we must have S 6= I0 but now we are
in trouble again since, according to the description, the output must be I0! So
whatever the output is we end up with a contradiction.

The contradiction we have arrived at can easily be banished provided we give
up our aim of producing a general theory in which programs always terminate.
The new situation is that a valid program either terminates and produces a result
or never terminates and thus does not produce a result. We can still carry out
the preceding argument but now the first line of the program description is not
justified, the description must be replaced by:

on input n run program Pn on n;
if this terminates (i.e., we get here) let the output be R;
if R = I0 then return I1 else return I0;

This is a perfectly good description of a program and so must be represented by
some Pm in our system. However the argument given above now shows that Pm

does not halt on input m so that there is no contradiction.
We are now in a position to define (in this informal setting) what we mean by

a computable function. We focus on functions that take strings over our alphabet
and return such strings. Moreover we allow functions that may not be defined on
some (or even all) strings: the domain of a function can be any subset of the set
of strings. We say that such a function f is computable if there is a program P
such that for all valid strings I we have that P on input I terminates (i.e., returns
a value) if and only if f(I) is defined and when this is so then the program returns
the string f(I).

As mentioned above, it is very important to understand the difference between
the definition of a function and a method or algorithm for computing it (assuming
there is one). Sometimes the definition gives us an obvious method and at other
times we have to work hard to find one or show that the function is not computable.

7It is worth stressing that this argument simply shows that the description we have given
does indeed correspond to a program within our system (given the assumption that all programs
terminate). It does not claim, nor prove, that the described program is the only possible one
within our system that could express the given behaviour. For example it is conceivable that our
system has the ability to analyze Pn on n and deduce the output without actually running Pn

at all.

5



In some cases we are unable to find which possibility applies. For example consider
f : N 7→ N defined by

f(n) =

{
1 if the first 2n digits of the decimal expansion of π

have n consecutive 7’s;
0 otherwise.

This is easily seen to be computable; there are many ways to compute π to any
desired degree of accuracy so given n we compute to an accuracy of 2n digits and
check. Consider now the similar function g : N 7→ N defined by

g(n) =
{

1 if the decimal expansion of π has n consecutive 7’s;
0 otherwise.

Here we cannot apply the previous strategy since we have no upper bound on how
far to look and it might be the case that for a given n the expansion of π does
not have n consecutive 7’s. Indeed, at the time of writing, it is not known how to
compute g. Finally let P be the set of all polynomials in x with integer coefficients,
e.g., x5 − x + 1 and 5x12 − 6x7 + 33x2 − x + 10 are elements of P. Consider the
function h : P 7→ N defined by

h(p) = number of real roots of p.

For example h(x2 − 1) = 2 while h(x2 + 1) = 0. The definition of h gives us no
clue as to how to compute it or even if it is computable. A naive attempt would
be to try and find all the real roots of the given polynomial but this is full of
problems (popular approaches such as Newton-Raphson iteration can miss roots
or be fooled into thinking that a number is a root when in fact it simply makes the
value of the polynomial very small but not actually 0). This question was a matter
of great concern (and of practical importance) to researchers around the turn of
the 18th century. There were many attempts to solve it, most of which failed or
at best were only partially successful. It was not till 1835 that C. Sturm produced
a surprisingly simple algorithm that computes h exactly. It is remarkable that
Sturm’s algorithm never attempts to find any roots and does not use any floating
point arithmetic at all.

Exercise Let U be the function that is undefined for all strings. Write code in
Java (or any other high level language) that computes U according to the definition
given above.

Exercise We could object to the statement that a non-terminating program
does not produce a result since we could imagine a mechanism whereby a program
produces output and does not terminate. Convince yourself that this does not
destroy the essence of our last argument. (Think carefully what we could really
mean by a non-terminating program producing ‘a result’.)

6



Exercise Sturm’s algorithm is simple but very hard to discover. Try to find an
algorithm for yourself but do not spend too much time on this! For a description of
Sturm’s algorithm see D. E. Knuth, Seminumerical Algorithms, (Second Edition),
Addison-Wesley (1981).

§1.4. The Halting Problem. We have seen that non-termination is an inherent
feature of any sufficiently general system of computing. However we could try to
get round non-termination by finding a program H that takes arguments m, n
(which, as observed above, can easily be encoded as a single argument) and returns
True if Pm halts on input n, otherwise it returns False (here we use boolean
identifiers since they are easier to remember but of course any two distinct values
will do the job). Note that H itself should halt on all inputs; it would hardly
serve the intended purpose otherwise. Surely such an H would be just as good
as the original aim of guaranteed termination. Unfortunately it takes only a little
thought to modify our previous construction to:

if H(n, n) then loop forever
else halt (and return 0)

(The key point about the else part is that we halt; the returned value is of no
interest.) Surely our system can express this description as a program Pm, say.
But now consider the behaviour of Pm on input m. If it halts then H(m, m)
returns True and the description of Pm says ‘loop forever’ ! Thus Pm cannot halt
on m but then H(m, m) returns False in which case the description of Pm says
‘halt’ ! Thus we are once again enmeshed in a contradiction. The only way out is
to abandon the assumption that H exists.

§1.5. Diagonalization. The two arguments we have presented above in
§§1.3, 1.4 have the same flavour. Consider an infinite matrix with rows indexed
by programs (or equivalently their indices) and columns by inputs (which we have
encoded as natural numbers). At entry (m, n) we place Pm(n) which we interpret
as the result of running Pm on input n, i.e., the output in case of termination and
a special symbol ‘⊥’ (which we assume is not in A) in case of non-termination.
(Note that we are not claiming to be able to determine whether Pm(n) stands for a
string or the special symbol; just that these are the only possibilities.) The infinite
matrix looks like this:

0 1 2 . . .

P0 P0(0) P0(1) P0(2) . . .

P1 P1(0) P1(1) P1(2) . . .

P2 P2(0) P2(1) P2(2) . . .
...

...
...

...
. . .

7



This represents all possible situations (at the level of input and outcome) in our
programming system. The idea behind each of the two arguments is to show that
an assumption about a general system of programming cannot hold by using the
assumption to build a program that disagrees with each possible program on at
least one input: in this case we have a contradiction. We might be tempted to use
a description such as

let P be a program that disagrees with each Pm on at least one input

However this is highly unsatisfactory; how do we know that there is such a P
(under the assumption)? We must demonstrate beyond doubt that there is a
program that meets our requirements. Looking at the matrix we see that our
aim will be achieved if we construct a program that disagrees with all the entries
in the main diagonal, i.e., P0(0), P1(1), P2(2), . . .. The key point is that in each
case we achieve our aim by describing a construction that clearly corresponds to
a program. This process of diagonalization is very powerful and has many uses in
computing; if you go on to study Computational Complexity in CS4 you will meet
the same process applied to the relative power of resource bounded computing.

It is a remarkable fact that diagonalization was invented by Georg Cantor
(long before theories of computing) as part of his study of infinite sets in a series
of papers in the last quarter of the 19th century. We will proceed to describe two
very beautiful results arising from this study.

It was known for a long time (at least since Galileo) that infinite sets have rather
unusual behaviour. Consider the notion of counting; it can be extended from the
finite to the infinite by saying that two sets have the same size (or cardinality) if
we can find a 1-1 correspondence between their elements, in other words a bijective
function from one set to the other. Thus the finite sets { 0, 1, 2 } and { a, b, c } have
the same cardinality since we have the 1-1 correspondence 0 ↔ a, 1 ↔ b, 2 ↔ c
(amongst many others). Now consider the set of all integers and the set of all
even integers, the latter is a proper subset of the former and yet we have the 1-1
correspondence:

. . . −2 −1 0 1 2 . . .

. . . l l l l l . . .

. . . −4 −2 0 2 4 . . .

The general rule is given by n ↔ 2n. As another example we show that the
set of all real numbers has the same cardinality as the open interval (0, 1), i.e.,
all real numbers r such that 0 < r < 1. We give a pictorial sketch of a 1-1
correspondence. First of all we introduce a step that is not necessary but leads
to symmetric pictures: the interval (0, 1) is clearly in 1-1 correspondence with the
interval (−1/2, 1/2) by x 7→ x − 1/2. Now consider the parabola y = x2 with

8



Figure 2: The 1-1 correspondence between (0, 1) and the reals.

x ∈ (−1/2, 1/2), i.e, consider the set of points { (x, x2) | x ∈ (−1/2, 1/2) } in the
plane. This is clearly in 1-1 correspondence with (−1/2, 1/2) via x 7→ (x, x2). Now
we put the (portion of) the parabola in 1-1 correspondence with the reals: given
any point P on the parabola, draw a straight line through P and the point (0, 1/4)
on the y-axis. This line meets the x-axis in exactly one point and the x-coordinate
of this gives the real number corresponding to P . Putting the two correspondences
together we obtain the claimed correspondence between the open interval (0, 1) and
the real numbers. The construction is shown pictorially in Figure 2; geometrically
it is given by two projections.

Exercise Let L be the straight line passing through the points (0, 1/4) and
(s, s2). Verify that L is given by the equation x− 4sy/(4s2− 1) + s/(4s2− 1) = 0.
Deduce that r 7→ (2r− 1)/8r(1− r) gives the 1-1 correspondence described above
between the open interval (0, 1) and the real numbers.

The examples discussed above are just two of many. It therefore seems possible
that all infinite sets have the same cardinality. In fact this is not so as Cantor
showed. We proceed to describe his proof that the set of real numbers has strictly
larger cardinality than the set of natural numbers. Certainly the cardinality of
the reals is at least as large as that of the natural numbers since the latter are a
subset of the former. Now suppose that the claim is false so that there is a 1-1
correspondence between the two sets. Using the second example above we deduce
that there must therefore be a 1-1 correspondence between the natural numbers
and the open interval (0, 1) of real numbers. Thus there is a list α0, α1, α2, . . . that
enumerates all the numbers in (0, 1) with each number occurring exactly once.
Now each real number in (0, 1) can be represented uniquely as an infinite decimal
(recurring 0 being allowed) provided we forbid recurring 9 (recall that 0.999 . . . = 1
so that a tail of recurring 9 can be replaced by 1 followed by recurring 0). So
αi = 0.αi0αi1αi2 . . . for i ≥ 0. We proceed to construct a real number δ in (0, 1)
that differs from each αi; since this is a contradiction the claim follows. Ignoring

9



the leading 0 we write out the decimal digits of our list α0, α1, α2, . . . as follows:

0 1 2 . . .

α0 α00 α01 α02 . . .

α1 α10 α11 α12 . . .

α2 α20 α21 α22 . . .
...

...
...

...
. . .

Now we define

δi =

{
1, if αii 6= 1;
2, if αii = 1.

Clearly the number 0.δ0δ1δ2 . . . is in (0, 1) but is different from each αi (here we
have used the fact that if two of our decimal representations look different then
they do indeed represent different numbers). This completes the proof of the claim.

Exercise Suppose that in the proof above we defined δi by

δi =

{
0, if αii 6= 0;
1, if αii = 0.

This does the job just as well but we have to check one extra thing. Explain what
that is and complete the proof.

Another of Cantor’s results concerns the cardinality of the power set, P(X), of a
set X. Recall that P(X) = {Y | Y ⊆ X }, i.e., the set of all subsets of X. Cantor
showed that there cannot be a function from X onto P(X) and so the cardinality
of P(X) is strictly larger than that of X. His proof is again by contradiction:
suppose there is a function f : X → P(X) that is onto, i.e., for every Y ∈ P(X)
there is a y ∈ X such that Y = f(y). Now, bearing in mind that f(x) is a subset
of X for each x ∈ X, consider the set A = {x ∈ X | x 6∈ f(x) }. Since A is a
subset of X there must be an a ∈ X such that A = f(a). But now we have a
contradiction since, by the definition of A, we have a ∈ A if and only if a 6∈ f(a),
i.e., if and only if a 6∈ A! This contradiction shows that f does not exist.

Exercise A function f : N → N is non-decreasing if f(0) ≤ f(1) ≤ f(2) ≤ . . .,
i.e., f(n) ≤ f(n + 1) for all n ∈ N. Use Cantor’s second result to prove that
there are uncomputable such functions. (Hint: how many computable functions
are there?)

§1.6. Paradise lost. Cantor’s work on sets was based on the plausible assump-
tion that if P is any property then there is a set consisting precisely of all those

10



objects x such that P is true. Unfortunately this is too liberal and leads to con-
tradictions as Bertrand Russell showed. He started from the following fact about
sets: if A is any set and x is an object (of any kind, e.g., a set) then either x ∈ A
or x 6∈ A. So let us consider the set

R = {x | x is a set and x 6∈ x }.

Since R is a set (if we follow Cantor’s assumption) we can ask if R ∈ R. But now
we are in trouble for by definition R ∈ R if and only if R 6∈ R. (An alternative
formulation is to consider catalogues; some list themselves and some do not. Try
to build a catalogue of all catalogues that do not list themselves.)

It is clear, and somewhat ironic, that Russell’s paradox (published in 1903) is
based quite closely on Cantor’s work. The problem lies in the self reference used;
however it would be an over-reaction to conclude that all forms of self reference
must be excluded. Russell’s proposed solution was his ‘Ramified Theory of Types’
which allowed a controlled form of self reference. However this was quite com-
plicated and very difficult to use. There are now various systems of axioms for
set theory; the most widely used is due to Zermelo-Fraenkel. (We should com-
ment here that the set A defined in Cantor’s proof that the cardinality of P(X) is
strictly larger than that of X is perfectly above board; it is justified by the ‘Axiom
of Subset Selection’ of Zermelo-Fraenkel.) In fact most people work with sets at
the intuitive level that Cantor took for granted, resorting to a formal theory only
in tricky situations. Russell’s paradox shows beyond doubt that we need to take
great care, e.g., by having a formal account—this might still lead to contradictions
but so far everything seems okay for the Zermelo-Fraenkel system.

§1.7. Truth and formal proof. The dream of Russell and many others (e.g.,
the very great mathematician David Hilbert) in the early part of the 20th century
was to provide a formal system which could be used for all of Mathematics, at least
in principle. The daunting Principia Mathematica by Russell and Whitehead was
one example of these efforts. It came as quite a shock when in 1931 Kurt Gödel
showed that in any consistent formal system capable of expressing arithmetic there
are statements that are true but not provable. The heart of Gödel’s proof is once
again a very simple idea based on self reference. Consider the statement

S = ‘This sentence is unprovable.’

Now in a consistent system we can only prove true statements. Therefore the
sentence is unprovable in which case it is true. This appears to be a contradiction
since we seem to have just proved that the sentence is true! However once again we
must state things with greater care: first of all what do we mean by ‘proof’? One
way to supply a satisfactory answer to this is to introduce a system of deduction,

11



as Russell and others did. ‘Proof’ is then defined within such a system, let us call
it D. The statement S now becomes

SD = ‘This sentence is unprovable in system D.’

However this is still unsatisfactory since we can hardly ask system D to deal with
things that it cannot express. Therefore we don’t have anything more than an
intriguing possibility until we can show that SD can itself be expressed in system D.
Gödel realized that the statements of a system D can be encoded as integers (now
called Gödel numberings, cf. encodings of programs). He then showed that, for
each natural number n, the sentence

SD,n = ‘The statement in the system D whose number is n is unprovable in D’

can be expressed in any formal system D that is powerful enough to express
arithmetic. It can then be shown that there is a number m such that the Gödel
number of SD,m is precisely m. We see immediately that we have a true statement
in D, namely SD,m, that is unprovable in D.

A detailed proof is fairly technical as might be expected but a knowledge of
methods and results from computability leads to a simplified proof.

§1.8. Formal models of computing. We require the following properties from
a formal model of computing.

1. Computation within the model should proceed by a sequence of steps, each
step being entirely mechanical. We want the model to be, at least in princi-
ple, physically realisable.

2. The model should support the computation of all things that we intuitively
believe to be computable. This requirement rules out finite state machines,
which cannot perform such reasonable tasks as recognizing when a binary
sequence is a palindrome, or when a sequence of parentheses is properly
nested.

3. The model should be simple, so that a ‘theory of computation’ can be de-
veloped without unnecessary complications. This requirement rules out the
use of a real computer as the model, a choice which would in other respects
be quite attractive.

As noted in §1.1 a model of computation which appears to possess these three
properties was proposed by Alan Turing in 1936, and now bears his name.

Acknowledgement. Most of these lecture notes were originally written by Mark
Jerrum. This one, and Note 14, were written by Kyriakos Kalorkoti. Subsequent
changes are due to Don Sannella.

12


