
UG3 Computability and Intractability: Appendix C

C.1. Simulation of a Turing machine by a RAM. We saw, in Appendix B,
that any language that is accepted by a RAM is also accepted by a Turing machine.
Here we prove that the converse holds: any language that is accepted by a Turing
machine is also accepted by a RAM. In fact we demonstrate rather more. Recall
that a three-register RAM is a random access machine, as defined in Note 5,
but having just three registers, with addresses −1, 0, and 1. The state of a three
register RAM is thus a function from {−1, 0, 1} to Z. To avoid referencing non-
existent registers we place a severe restriction on the form of l values and r values
that may occur in a program for a three-register RAM: the only l values allowed
are '-1, '0, and '1; and the only r values allowed are '-1, '0, '1, and signed
decimal constants. Note that ‘indirect addressing’ is forbidden.

Theorem 1.1 Let L be a language over some alphabet Σ. If there is a Turing
machine that accepts L, then there is a three-register RAM that also accepts L.

proof. Let M = (Q, Γ, Σ, b̄ , qI , qF , δ) be a (one-tape) Turing machine that ac-
cepts the language L. We shall construct a three-register RAM program P that
simulates M .

During its simulation of M , the RAM maintains an encoding of the contents
of M ’s tape; the encoding scheme employed is the following. Let m = |Γ| + 1,
and assign to each symbol in Γ a distinct internal code which is an integer in
the range 0 to m − 2. We insist that the blank symbol receives code 0, and that
elements of Σ receive codes in the range 1, . . . , |Σ|; otherwise the assignment of
codes to symbols is arbitrary. The number m − 1 is reserved as the code for a
special ‘end-of-tape symbol’ whose purpose will become apparent in due course.

Now fix attention on the tape of M at some instant during a computation.
Assume that the tape squares are numbered in sequence, starting at zero. For
each natural number i let ai be the internal code of the symbol appearing in tape
square i, and let a−1 be m−1 (the end-of-tape symbol). Also let k be the sequence
number of the currently scanned tape square. Then the tape contents of M are
encoded as three integers which are stored in the registers of the RAM as indicated
below.

content of register −1: l = ak−1 + ak−2m + ak−3m
2 + · · · + a−1m

k;

content of register 0: s = ak;

content of register 1: r = ak+1 + ak+2m + ak+3m
2 + · · · .

Note that r is a well defined integer, despite being specified by a infinite series; to
see this, recall that the internal code of the blank symbol is zero, and that there
can be only a finite number of non-blank symbols on M ’s tape. Note also that the
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three registers of the RAM between them provide a complete description of the
tape contents: the digits of l and r, when expressed as numbers in base m, yield
the internal codes of the symbols appearing to the left and right of the tape head,
while s is the internal code of the scanned symbol.

We now consider the flow of control in the program P that performs the simu-
lation. Let the states of M be q0, q1, q2, . . . , q|Q|−1, where q0 is the initial state. The
top-level structure of P is presented in Figure 2. Here, as elsewhere in this note,
the notation 〈n〉 is used to denote the decimal representation of the number n.
(Thus, if M were a 186-state machine, state〈|Q| − 1〉 would stand for the string
state185.) Aside from some preliminary code concerned with initialization, it will

[[ code to read the input word and initialise registers ]]
state0: [[ code to simulate transitions from state q0 ]]
state1: [[ code to simulate transitions from state q1 ]]
state2: [[ code to simulate transitions from state q2 ]]

...

state〈|Q| − 1〉: [[ code to simulate transitions from state q|Q|−1 ]]

Figure 2: Stepwise refinement: deciding the state.

be seen that the program P is formed from a series of blocks, each block dealing
with transitions from a single state. We shall consider these blocks first, returning
at the end to deal with the task of initialization. The block corresponding to the
final state of M is special, consisting of a single accept instruction. Each of the
other blocks is constructed according to a fixed template; a typical instance—the
block corresponding to state q0—is shown in Figure 3. What we see in Figure 3 is
a primitive case-statement whose limbs are selected according to the scanned sym-
bol. The state q and scanned symbol s having been determined, the code within
each limb of the case-statement now has the job of implementing the transition
itself. If no transition is defined for the pair (q, s), then the limb consists of a
single reject instruction. Otherwise, suppose δ(q, s) = (q′, s′, L). (The case of a
right shifting transition is handled in an analogous manner.) The first action is to
simulate the overwriting of the current symbol of M : this is handled by a single
instruction which simply assigns the internal code for s′ to register 0. The next
action is to simulate the left shift of the tape head, which is achieved by the code
presented in Figure 4. (Observe that if the head of M drops off the end of the
tape, then the end-of-tape code appears in register 0. This condition is trapped
at the next cycle of the simulation.) The reader should check that the register
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if '0 = 0 goto pair0X0

if '0 = 1 goto pair0X1

if '0 = 2 goto pair0X2
...

if '0 = 〈m − 2〉 goto pair0X〈m − 2〉
reject

pair0X0: [[ scanned symbol has internal code 0 (i.e., is b̄) ]]
pair0X1: [[ scanned symbol has internal code 1 ]]
pair0X2: [[ scanned symbol has internal code 2 ]]

...

pair0X〈m − 2〉: [[ scanned symbol has internal code m − 2 ]]

Figure 3: Stepwise refinement: deciding the symbol.

contents after execution of this code fragment are

content of register −1: l′ = ak−2 + ak−3m + ak−4m
2 + · · · + a−1m

k−1;

content of register 0: s′ = ak−1;

content of register 1: r′ = ak + ak+1m + ak+2m
2 + · · · ;

as we should expect. The final action of the RAM in simulating a single transition

'1 := '1 * 〈m〉
'1 := '1 + '0

'0 := '-1 + 0

'-1 := '-1 div 〈m〉
'-1 := '-1 * 〈m〉
'0 := '0 - '-1

'-1 := '-1 div 〈m〉

Figure 4: Stepwise refinement: shifting left.

of M is to jump unconditionally to the instruction labelled state〈i〉, where i is
the index of the next state.

It only remains to deal with the code for input and initialization. If the in-
put loop is arranged in the obvious way, the head of the simulated machine ends
up scanning the first blank symbol. However a second loop incorporating a left
shift will return the tape head to the leftmost square in readiness for the simu-
lation proper. The necessary code is presented in Figure 5. This completes the
description of the program P . �
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'-1 := 〈m − 1〉
next char: read '0

if '0 = 0 goto end of input

'-1 := '-1 * 〈m〉
'-1 := '-1 + '0

if 0 = 0 goto next char

end of input: '1 := 0

shift: if '-1 = 〈m − 1〉 goto state0

[[ code to shift head left: see Figure 4 ]]
if 0 = 0 goto shift

Figure 5: Stepwise refinement: input and initialization.

Exercise (Hard! The kind that’s usually marked with a ∗) Does the theorem
remain true if ‘three-register RAM’ is replaced by ‘two-register RAM’?
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