
UG3 Computability and Intractability: Appendix B

B.1. Simulation of a RAM by a Turing machine.

Theorem 1.1 Let L be a language over some alphabet Σ. If there is a RAM that
accepts L, then there is a Turing machine that also accepts L.

proof. Let P be any RAM program constructed according to the syntax of
Note 5. Our aim is to construct a Turing machine M that correctly simulates the
operation of P on all inputs x ∈ Σ∗. It is convenient to allow M to be a machine
with multiple tapes; we know from Note 4 that M could, in turn, be simulated by
a one-tape machine. We shall not attempt to present a formal description of M in
terms of states, tuples, etc. Instead, the proposed machine M will be divided into
a number of functional components, and the operation of each of these described
informally. Each of these functional components will be sufficiently simple that we
shall be left in no doubt that the machine M could, in principle, be written down
quite formally. Our growing experience with Turing machines will assure us that
the details could be supplied on request.

The Turing machine M has an input tape, a storage tape, and a number of
work tapes. The input tape holds the input word x ∈ Σ∗, and simulates the input
stream of the RAM in a straightforward manner. The storage tape of M records
the current state of the RAM in a format shortly to be described. The work tapes
provide temporary storage for addresses and operands, and for performing simple
arithmetic computations. The storage tape and work tapes are initially blank, but
the first action of the machine M is to write a dollar symbol, $, onto the leftmost
square of the storage tape. It will become apparent that the storage tape now
contains an encoding of the zero function, which is the initial state of the RAM.

The storage tape of M , at a typical instant in the simulation, has the following
format:

$#a1:v1#a2:v2#a3:v3# · · · #am:vm b̄ b̄ b̄ · · · , (∗)
where ai and vi are integers represented as signed binary numbers. Roughly, each
pair ai:vi appearing on the storage tape can be interpreted as an assertion that the
register with address ai has content vi. If the storage tape contains no assertion
about a particular register, then that register is deemed to contain zero. If there
are a number of contradictory assertions about a particular register, then the
rightmost assertion takes priority. More formally, the storage tape (∗) specifies a
state s : Z → Z of the RAM, the function s being defined as follows. Let a be
any integer. If a 6= ai for all i in the range 1 ≤ i ≤ m, then s(a) = 0. Otherwise,
s(a) = vj, where j is the largest index for which aj = a.

The storage tape of M is required to support two operations:

(E) Given an integer a, evaluate s(a). That is, determine the content of a register
given its address.

1

(U) Given two integers v and a, modify the storage tape so that it becomes
a representation of the new state s′ = update(s, v, a). That is, assign the
value v to the register with address a.

Both operations are straightforward to implement as subroutines within M .
First, consider operation (E). Suppose the address a is presented as a signed

binary number on a designated work tape of M , and s(a) is to be returned on
another designated work tape. The machine M scans right along the storage
tape until it encounters a blank symbol. It then scans left along the storage tape
looking for the first occurrence of the substring #a: on the tape. If the dollar
symbol, $, is encountered before the substring is found, then 0 is written to the
result tape. Otherwise the head is shifted to the square immediately to the right of
the substring just located, and the signed binary number appearing there is copied
to the result tape. We shall refer to this entire procedure as subroutine (E).

Operation (U) is even more straightforward to implement. Suppose the integer
address a and integer value v are presented on designated worktapes of M . The
machine M scans right along the storage tape until it finds the first blank symbol.
It then continues scanning to the right, copying the string #a:v to the storage tape
as it proceeds. We shall refer to this procedure as subroutine (U).

Note that subroutine (E) searches the storage tape from right to left, and that
subroutine (U) always adds new pairs to the right of all existing pairs. Thus, when
a new pair #a:v is added to the storage tape, all existing pairs of the form #a:v′

(i.e., referring to the same address a) are rendered inaccessible. Subroutine (U)
thus achieves the effect of overwriting the previous content of the register with
address a.

Having described the use made by M of the storage tape, we are now in position
to describe how M may simulate each instruction of the RAM program P , and
hence the program itself. We consider each instruction type in turn. (Refer to
Note 5.)

(a) accept: M immediately accepts.

(b) reject: M immediately halts without accepting.

(c) read L: M reads a symbol from the input tape and converts it to an integer
code v, which is written to a designated work tape. (Recall that the RAM
has an internal code in the set {1, 2, . . . , |Σ|} for each symbol of the input
alphabet Σ. The blank symbol has code 0, meaning ‘end-of-input’.) At the
same time the head scanning the input tape is moved right one square in
preparation for the next read instruction. The operand L is now evaluated
in the context of the current state s of the RAM to yield an address a;
this address also is written to a designated worktape. The evaluation of L,

2

if it is of the form "k, will employ subroutine (E). Finally, the storage
tape is updated using subroutine (U). The storage tape now contains a
representation of the new state s′ = update(s, v, a) of the RAM.

1. (d)L := R1 ◦ R2: The simulating machine proceeds as follows. First, the
operands R1 and R2 are evaluated in context s, and the results v1 and v2

stored on two of the work tapes. The evaluation of operand Ri involves zero,
one, or two applications of subroutine (E), depending on whether Ri has the
form k, 'k, or "k. The machine M then computes v1 ◦ v2, and stores the
result, v, on a designated work tape. (Note that the four arithmetic opera-
tors, +, -, *, and div, can be implemented as Turing machine subroutines.)
Next, L is evaluated in context s to yield an integer address a, which is
stored on a designated work tape. The evaluation of L may involve a further
application of subroutine (E). Finally, the storage tape is updated using
subroutine (U). The storage tape now contains a representation of the new
state s′ = update(s, v, a) of the RAM.

(e) if R1 ◦ R2 goto λ: Using subroutine (E), the operands R1 and R2 are
evaluated in context s, and the results v1 and v2 stored on two of the work
tapes. M then computes v1 ◦ v2, and exits to different states according to
whether the result is true or false. (Note that the four relational operators,
=, <>, <=, and <, can be implemented as Turing machine subroutines.)

Using the constructions described in paragraphs (a)–(e) above, each instruction
in the RAM program P can be translated into a Turing machine subroutine. Each
subroutine can be considered, graphically, as a collection of states with associated
transitions. Each subroutine has one entry point (state), and up to two exits
(transitions from states): (a) and (b) have no exits, (c) and (d) have one, and (e)
has two (corresponding to the branch condition being true or false).

The machine M is now simply obtained by forming the disjoint union of the
subroutines corresponding to all the instructions in the program P , and then
gluing together the entry points and exit transitions of the subroutines so that the
instructions of P are simulated in the correct sequence. �

3

