Tutorial Sheet 5

1. Is there a recursively enumerable language L which is not reducible to its complement? Justify your answer.

2. Show that for any recursively enumerable language L, there is a polynomial-time reduction from L to the Halting Problem.

3. Prove that every language in NP can be recognized by a deterministic Turing machine in exponential time.

4. Show that if $\text{NP} = \text{P}$, then every language in P except the empty language and the language of all strings is NP-complete.

5. Show that the language of non-primes in binary representation is in NP.

Rahul Santhanam, November 2012