Computer Graphics 8 - Environment mapping
and mirroring

om T horne

Slides courtesy of Taku Komura
www.inf.ed.ac.uk/teaching/courses/cg

Overview

« Environment Mapping
* Introduction

e Sphere mapping

e Cube mapping

* Refractive mapping
* Mirroring

e Introduction

* Reflection first

e Stencil buffer

o Reflection last

Environment Mapping: Background

e Many objects are glossy or transparent
e Glossy objects reflect the external world
e The world is refracted through transparent objects

e Important to make the scene appear realistic

Example

Environment Mapping: Background

Precisely simulating such phenomena is computationally costly
* Requires ray tracing, which can be expensive

e Tracking the rays, finding out where they collide, and doing
another lighting computation

Environment Mapping

- Simple yet powerful method to generate reflections

- Simulate reflections by using the reflection vector to index
a texture map at "infinity".

View Point

Environment map
on a sphere

The original environment map was
a sphere [by Jim Blinn '76]

Sphere maps

Reflected Ray

: Normmna
Incident Ray ‘

< < Reflective Sphere

Viewing Plane

e A mapping between the reflection vector and a circular texture

e Contains the whole environment around a point in a single
Image

e Low resolution around edges

Sphere maps: overview

« Compute the reflection vector at the surface of the object

* Find the corresponding texture coordinates on the sphere
map

e Use the texture to colour the surface of the object

Indexing sphere maps

e Calculate the reflection vector R based on
direction to eye |

Indexing the sphere map

- Consider the mapping between
reflection vectors on the sphere
and the normal vector

« Assume that v is fixed at
(0,0,1)

« An un-normalised normal vector
n is then:

n=r1r-—+uv
= (Tg, Ty, 72 + 1)

Indexing the sphere map

e Ty Tzt 1
9 9
m m m

)

mo= /12 72+ (r. 1)

m=(

+ Assume the sphere is of unit
radius and centred at the origin

- We can index the sphere map
using the x and y components
of the normalised normal vector

Generating sphere maps

« Take a photograph of a shiny sphere
- Mapping a cubic environment map onto a sphere

 For synthetic scenes, use ray tracing

Issues with sphere mapping

« Cannot change the viewpoint
(requires recomputing the
sphere map)

« Highly non-uniform sampling

« Highly non-linear mapping

- Linear interpolation of texture

coordinates picks up the wrong

texture pixels _
Correct Linear

« Do per-pixel sampling or use
high resolution polygons

Cube Mapping

 The map resides on the surfaces of a
cube around the object

* Align the faces of the cube with the
coordinate axes

View Point

Environment map
on a cube

Procedure

During rasterisation, for every pixel,

1. Calculate the reflection vector R using the camera (incident) vector and
the normal vector of the object N

2. Select the face of the environment map and the pixel on the face
according to R

3. Colour the pixel with the colour of the environment map

Z.

Look up the environment map just using R v
|

———————————

Object

Procedure

During rasterisation, for every pixel,

1. Calculate the reflection vector R using the camera (incident) vector and

the normal vector of the object N

2. Select the face of the environment map and the pixel on the face

according to R

3. Colour the pixel with the colour of the environment map

Look up the environment map just using R

>

Z.

———————————

Object

Procedure

During rasterisation, for every pixel,

1. Calculate the reflection vector R using the camera (incident) vector and
the normal vector of the object N

2. Select the face of the environment map and the pixel on the face
according to R

3. Colour the pixel with the colour of the environment map

Z.

Look up the environment map just using R %2

———————————

Object

Indexing Cubic Maps

« Assume you have R and the cube’s faces are aligned with the
coordinate axes

« How do you decide which face to use?
* The reflection vector coordinate with the largest magnitude

« R=(0.3, 0.2, 0.8) -> facing in 4z direction

./ ‘

Indexing Cubic Maps

* How do you decide which texture coordinates to use?
* Divide by the coordinate with the largest magnitude
* Now have a value in the range [-1,1]

 Remapped to a value between 0 and 1.

T

‘ ‘
l{lx.y,z)t/_" Cylz : : \

1 HE
X/ 7 S - "
L s } — 0.5%(y/z + 1)

v ~
0.5%x/z + 1)\

1
0
y
~L.
Z

Cubic Mapping: How to make one?

 Draw with a computer

e Ta
obj

ke 6 photos of a real environment with a camera in the

ect’'s position: much easier

Made from the Forum Images

Pros and cons

Advantages of cube mapping?

Problems with sphere mapping?

Refractive environment mapping

- When simulating effects mapping the
refracted environment onto translucent

materials such as ice or glass, we must use
Refractive Environment Mapping

Snell’'s law

Light travels at different speeds in different media

Material

Vacuum
Alr
Water
Glass
Plastic
Diamond

2.417

Index of Refraction

Snell’'s Law:
nqsinf#; = no sin B

N9
1.0
1.0003
1,3333
1.5
1.5
ny

Snell's Law

« When light passes through a boundary
between two materials of different density
(air and water, for example), the light's
direction changes.

« The direction follows Snell's Law

- We can do environment mapping using

the refracted vector

Normal
Vector N

Incidenm
Vector |

Refracted
Vector T

i sinfl, = n,sinf,

Material Index of Refraction

vacuum 1.0
Alr 1.0003
Water 1.3333
Glass 1.5
Plastic 1.5

Diamond

2.417

Snell’'s law

Normal
Vector N

. Incidemt
e |[ncoming vector | Vector |

e Refracted vector T

U3
r=—

T2
w=—(I-n)r

Refractive environment mapping

e Use the refraction vector after the first hit as the index to

the environment map

e Costly to compute the second refraction vector

:b/

Camera

nvironmen

Summary

* Environment mapping is a quick way to simulate the effects
of reflecting the surrounding world on the surface of a glossy

object
* Practical approaches are cube mapping and sphere mapping

e Can also be applied for simulating refraction

Overview

e Environment Mapping
e Introduction

» Sphere mapping

e Cube mapping

* Refractive mapping
« Mirroring

e Introduction

* Reflection first

e Stencil buffer

o Reflection last

Flat Mirrors: Background

e Basic idea: Drawing a scene with mirrors
e Mirrors reflect the world

e A scene with a mirror can be drawn by rendering the world
twice:

e Draw original scene

e Draw reflected scene

Flat Mirrors: Background

* Simply rendering the scene twice can result in problems

* Unless the mirrored world is hidden by the real world, the
flipped world may appear outside of the mirror!

* We can avoid such problems using a “stencil buffer”

Reflecting objects

» |f the mirror passes

through the origin, and is
aligned with a coordinate

axis, then just negate

Wall Mirror

\

appropriate coordinate

» For example, if a reflection

blane has a normal
n=(0,1,0) and passes the
origin, the reflected

10 00 _ |
01 0 0 vertices can be obtained

00-10 by scaling matrix S(1,-1,1)
00 0 1

S =

Reflecting objects

« What if the mirror is not

. on a plane that passes the

W‘l' Mirlmr « How do we compute the

mirrored world?

 First, we need to compute

the location of objects
relative to the mirror

Recap:
Transformations between different
coordinate systems

We can interpret that the transformation
matrix is converting the location of vertices
between different coordinate systems

v, = My,

v, = M~ 1p9I

Reflecting objects

« To know the positions of
" objects with respect to

- the mirror coordinate

— « We multiply by a
\ transformation matrix
)

from the world to the

mirror coordinates

x" = RM)™T(-p) x

Reflecting objects

- For finding out the flipped
location in the mirror
coordinate, we multiply by

Mirror the mirroring matrix

}

x"=5(1,1,-1) x’

Reflecting objects

- Now we want to know
where the flipped points

are with respect to the

X’ world origin
Mirror
l] 17
« We can multiply x'* by the
transformation matrix to
move from the origin to
T the mirror to know where
It is with respect to O
O

x"=T(p)R(n) x"

Reflecting objects

« Combined:

x'=R)™T(-p) x
x"=5(1,1,-1) x'
X' = T(p)R(Tl) X!

x""=T(m)RM)S(1,1,—1)RM)"T(-p) x

Mmirrror = T(p)R(n)S(1,1, _I)R(n)_lT(_p)

Reflecting objects

- Need to avoid drawing objects behind the mirror in front of it

Specify a clipping plane parallel to the mirror

User defined

clipping plane

Drawing the mirrored world

e Draw the mirrored world first, then the real world
e Only using the depth (Z) buffer
e Does not work in some cases
e Draw the real-world first, and then the mirrored world

e Requires using a stencil buffer

/-buffer

e One method of hidden surface removal
e Basic Z-buffer idea: For every input polygon

e For every pixel in the polygon interior, calculate its
corresponding z value.

e Compare the depth value with the closest value from a
different polygon (largest z) so far

e Paint the pixel (filling in the colour buffer) with the colour
of the polygon if it is closer

Z buffer example

z=-0.8
I
B =05
l | Z=<0.3
A
Correct Final 1mage

Top View

Z buffer example

Step 1: Initialize the depth buffer

i 104 Il 51 404 (1120)i 51RO
SRON RO 0| 51D
10| -1.0{-1.0|-10
-10 | -1.0(-1.0(-1.0

Z buffer example

Step 2: Draw the blue polygon (assuming the
program draws blue polyon first — the order does
hot affect the final result any way).

z=-0.8

B =05

l | Z=<0.3

eye

Z buffer example

Step 3: Draw the yellow polygon

z=-0.8
e
B =05
=10 |-1.01(-10 F1.0 | 2=0.3
-1.0 |-03 (=03 (-1.0 4
-0.3 1-0.3 |-1.0
-1.0|-1.0
eye

If the depth value is larger than that in the z-buffer, the
pixel Is coloured and value in the z-buffer is updated

Z buffer example

Step 4: Draw the red polygon 7=-0.8

BN =05

10 |-1o NI . 2
1.0 |-03 |-0.3 | O ‘

-0.3 [-0.3 [-1.0
-1.0 |-1.0

0.3

eye

If the depth value is larger than that in the z-buffer, the
pixel is coloured and value in the z-buffer is updated

Rendering Reflected Scene First

* First pass: Render the reflected scene without mirror, depth test on

e Second pass:

* Disable the colour buffer, and render the mirror polygon (setting
the Z-buffer values but not drawing pixel colours over reflected
scene)

* Now the Z buffer of the mirror region is set to the mirror’s
surface

e Third Pass:
* Enable the colour buffer again

e Render the original scene, without the mirror

e Depth buffer stops us from writing over things in mirror

Rendering the reflected scene first

* The reflected area
outside the mirror region
Is overwritten by the
objects in the front

- Can't draw multiple
mirrors or reflections of
MIrrors In mMirrors
(recursive reflections)

Using a stencil buffer

- The stencil buffer can help to prevent drawing outside of the

mirror region

Using a stencil buffer

e The stencil buffer acts like a paint stencil - it lets some
fragments through but not others

e It stores multi-bit values . E: \ 1

e You specify two things:

e The test that controls which fragments get through

e The operations to perform on the buffer when the test
passes or fails

Example

Mirror

Procedure

e First pass:

e Render the scene without the mirror
e For each mirror:

e Second pass:

e Clear the stencil, disable the write to the colour buffer,
render the mirror, setting the stencil to 1 if the depth test
passes

e Third pass: Stencil buffer after the second pass

e Clear the depth buffer with the stencil active, passing things
inside the mirror only

e Reflect the world and draw using the stencil test. Only things
seen in the mirror will be drawn

e Combine it with the scene made during the first pass

Render the mirrored scene
into the stencil

Multiple mirrors

e Can manage multiple mirrors

e Render normal view, then do
other passes for each mirror

e A recursive formulation exists
for mirrors that see other
MIrrors

» After rendering the reflected
area inside the mirror
surface, render the mirrors

inside the mirror surface,
and so on

References

* Akenine-Moller, Chapter 8.4 (Environment mapping)
» Akenine-Moller, Chapter 9.3.1 (Planar reflections)

* http://threejs.org/examples/#webgl materials cubemap

* http://www.pauldebevec.com /ReflectionMapping/

http://threejs.org/examples/#webgl_materials_cubemap
http://www.pauldebevec.com/ReflectionMapping/

