
Computer Graphics 8 - Environment mapping
and mirroring

Tom Thorne

Slides courtesy of Taku Komura

www.inf.ed.ac.uk/teaching/courses/cg

Overview

• Environment Mapping

• Introduction

• Sphere mapping

• Cube mapping

• Refractive mapping

• Mirroring

• Introduction

• Reflection first

• Stencil buffer

• Reflection last

Environment Mapping: Background

• Many objects are glossy or transparent

• Glossy objects reflect the external world

• The world is refracted through transparent objects

• Important to make the scene appear realistic

Example

Environment Mapping: Background

Precisely simulating such phenomena is computationally costly

• Requires ray tracing, which can be expensive

• Tracking the rays, finding out where they collide, and doing
another lighting computation

Environment Mapping

● Simple yet powerful method to generate reflections

● Simulate reflections by using the reflection vector to index
a texture map at "infinity".

The original environment map was
a sphere [by Jim Blinn ’76]

Sphere maps

• A mapping between the reflection vector and a circular texture
• Contains the whole environment around a point in a single

image
• Low resolution around edges

Sphere maps: overview

• Compute the reflection vector at the surface of the object

• Find the corresponding texture coordinates on the sphere
map

• Use the texture to colour the surface of the object

Indexing sphere maps

• Calculate the reflection vector R based on
direction to eye I

N

I
R

α

R = 2(N · I)N � I

Indexing the sphere map

• Consider the mapping between
reflection vectors on the sphere
and the normal vector

• Assume that v is fixed at
(0,0,1)

• An un-normalised normal vector
n is then:

v

r n

v
nr

n = r + v

= (r
x

, r
y

, r
z

+ 1)

Indexing the sphere map

• Assume the sphere is of unit
radius and centred at the origin

• We can index the sphere map
using the x and y components
of the normalised normal vector

v

r n

v
nr

n = (
r
x

m
,
r
y

m
,
r
z

+ 1

m
)

m =
q
r2
x

+ r2
y

+ (r
z

+ 1)2

Generating sphere maps

● Take a photograph of a shiny sphere

● Mapping a cubic environment map onto a sphere

● For synthetic scenes, use ray tracing

Issues with sphere mapping

● Cannot change the viewpoint
(requires recomputing the
sphere map)

● Highly non-uniform sampling

● Highly non-linear mapping

● Linear interpolation of texture
coordinates picks up the wrong
texture pixels

● Do per-pixel sampling or use
high resolution polygons

Correct Linear

Cube Mapping

• The map resides on the surfaces of a
cube around the object

• Align the faces of the cube with the
coordinate axes

Procedure

During rasterisation, for every pixel,

1. Calculate the reflection vector R using the camera (incident) vector and
the normal vector of the object N

2. Select the face of the environment map and the pixel on the face
according to R

3. Colour the pixel with the colour of the environment map

• Look up the environment map just using R

Procedure

During rasterisation, for every pixel,

1. Calculate the reflection vector R using the camera (incident) vector and
the normal vector of the object N

2.Select the face of the environment map and the pixel on the face
according to R

3. Colour the pixel with the colour of the environment map

• Look up the environment map just using R

Procedure

During rasterisation, for every pixel,

1. Calculate the reflection vector R using the camera (incident) vector and
the normal vector of the object N

2. Select the face of the environment map and the pixel on the face
according to R

3. Colour the pixel with the colour of the environment map

• Look up the environment map just using R

Indexing Cubic Maps

● Assume you have R and the cube’s faces are aligned with the
coordinate axes

● How do you decide which face to use?

• The reflection vector coordinate with the largest magnitude

• R=(0.3, 0.2, 0.8) -> facing in +z direction

Indexing Cubic Maps

• How do you decide which texture coordinates to use?

• Divide by the coordinate with the largest magnitude

• Now have a value in the range [-1,1]

• Remapped to a value between 0 and 1.

v

d

yx

y

x

=
v

d

Cubic Mapping: How to make one?

• Draw with a computer

• Take 6 photos of a real environment with a camera in the
object’s position: much easier

Made from the Forum Images

Pros and cons

• Advantages of cube mapping?

• Problems with sphere mapping?

Refractive environment mapping

• When simulating effects mapping the
refracted environment onto translucent
materials such as ice or glass, we must use
Refractive Environment Mapping

Snell’s law

• Light travels at different speeds in different media

Snell’s Law

● When light passes through a boundary
between two materials of different density
(air and water, for example), the light’s
direction changes.

● The direction follows Snell’s Law

● We can do environment mapping using
the refracted vector T

Snell’s law

• Incoming vector I

• Refracted vector T

T = rI + (w � k)n

r =
n1

n2

w = �(I · n)r

k =
p

1 + (w � r)(w + r)

 Refractive environment mapping

• Use the refraction vector after the first hit as the index to
the environment map

• Costly to compute the second refraction vector

Summary

• Environment mapping is a quick way to simulate the effects
of reflecting the surrounding world on the surface of a glossy
object

• Practical approaches are cube mapping and sphere mapping

• Can also be applied for simulating refraction

Overview

• Environment Mapping

• Introduction

• Sphere mapping

• Cube mapping

• Refractive mapping

•Mirroring

• Introduction

• Reflection first

• Stencil buffer

• Reflection last

Flat Mirrors: Background

• Basic idea: Drawing a scene with mirrors

• Mirrors reflect the world

• A scene with a mirror can be drawn by rendering the world
twice:

• Draw original scene

• Draw reflected scene

Flat Mirrors: Background

• Simply rendering the scene twice can result in problems

• Unless the mirrored world is hidden by the real world, the
flipped world may appear outside of the mirror!

• We can avoid such problems using a “stencil buffer”

Reflecting objects

● If the mirror passes
through the origin, and is
aligned with a coordinate
axis, then just negate
appropriate coordinate

● For example, if a reflection
plane has a normal
n=(0,1,0) and passes the
origin, the reflected
vertices can be obtained
by scaling matrix S(1,-1,1)

MirrorWall

Reflecting objects

● What if the mirror is not
on a plane that passes the
origin?

● How do we compute the
mirrored world?

● First, we need to compute
the location of objects
relative to the mirror

Reflecting objects

● To know the positions of
objects with respect to
the mirror coordinate

● We multiply by a
transformation matrix
from the world to the
mirror coordinates

Reflecting objects

● For finding out the flipped
location in the mirror
coordinate, we multiply by
the mirroring matrix

Reflecting objects

● Now we want to know
where the flipped points
are with respect to the
world origin

● We can multiply x’’ by the
transformation matrix to
move from the origin to
the mirror to know where
it is with respect to O

Reflecting objects

● Combined:

Reflecting objects

• Need to avoid drawing objects behind the mirror in front of it

• Specify a clipping plane parallel to the mirror

Drawing the mirrored world

• Draw the mirrored world first, then the real world

• Only using the depth (Z) buffer

• Does not work in some cases

• Draw the real-world first, and then the mirrored world

• Requires using a stencil buffer

Z-buffer

● One method of hidden surface removal

● Basic Z-buffer idea: For every input polygon

● For every pixel in the polygon interior, calculate its
corresponding z value.

● Compare the depth value with the closest value from a
different polygon (largest z) so far

● Paint the pixel (filling in the colour buffer) with the colour
of the polygon if it is closer

Rendering Reflected Scene First

• First pass: Render the reflected scene without mirror, depth test on

• Second pass:

• Disable the colour buffer, and render the mirror polygon (setting
the Z-buffer values but not drawing pixel colours over reflected
scene)

• Now the Z buffer of the mirror region is set to the mirror’s
surface

• Third Pass:

• Enable the colour buffer again

• Render the original scene, without the mirror

• Depth buffer stops us from writing over things in mirror

Rendering the reflected scene first

● The reflected area
outside the mirror region
is overwritten by the
objects in the front

• Can’t draw multiple
mirrors or reflections of
mirrors in mirrors
(recursive reflections)

Using a stencil buffer

• The stencil buffer can help to prevent drawing outside of the
mirror region

Using a stencil buffer

● The stencil buffer acts like a paint stencil - it lets some
fragments through but not others

● It stores multi-bit values

● You specify two things:

● The test that controls which fragments get through

● The operations to perform on the buffer when the test
passes or fails

Example

Mirror

Procedure

• First pass:

• Render the scene without the mirror

• For each mirror:

• Second pass:

• Clear the stencil, disable the write to the colour buffer,
render the mirror, setting the stencil to 1 if the depth test
passes

• Third pass:

• Clear the depth buffer with the stencil active, passing things
inside the mirror only

• Reflect the world and draw using the stencil test. Only things
seen in the mirror will be drawn

• Combine it with the scene made during the first pass

Stencil buffer after the second pass

Render the mirrored scene
 into the stencil

Multiple mirrors

• Can manage multiple mirrors

• Render normal view, then do
other passes for each mirror

● A recursive formulation exists
for mirrors that see other
mirrors

● After rendering the reflected
area inside the mirror
surface, render the mirrors
inside the mirror surface,
and so on

References

• Akenine-Möller, Chapter 8.4 (Environment mapping)

• Akenine-Möller, Chapter 9.3.1 (Planar reflections)

• http://threejs.org/examples/#webgl_materials_cubemap

• http://www.pauldebevec.com/ReflectionMapping/

http://threejs.org/examples/#webgl_materials_cubemap
http://www.pauldebevec.com/ReflectionMapping/

