
Computer Graphics 7 - Rasterisation

Tom Thorne

Slides courtesy of Taku Komura
www.inf.ed.ac.uk/teaching/courses/cg



Overview

I Line rasterisation
I Polygon rasterisation
I Mean value coordinates
I Decomposing polygons



Rasterisation

I After projection, polygons are still described in continuous
screen coordinates

I We need to use these polygons to colour in pixels on the
screen



Rasterising lines

We need to convert a line described in a continuous coordinate
system into a set of discrete pixels



Simple line drawing

Linear algebra:
y = mx + b
A very simple approach:

I Increment x, calculate new y
I Cast x and y to integers



Simple line drawing

I For lines where m ≤ 1 this
seems to work well

I When m > 1 this doesn’t
work, the line becomes
discontinuous



Symmetry

If m ≤ 1 increment along the x axis, otherwise when m > 1,
increment along y axis

I This still requires a lot of floating point arithmetic



Midpoint algorithm

Iterate over steps, having lit a pixel (xp, yp) at step p:

I Check where the line intersects xp+1
I Colour in (xp+1, yp) or (xp+1, yp+1) depending on which is

closer to the intersection



Testing for the side of a line

I Assume the line is between (xl , yl) and (xr , yr )

I The slope of the line will be dy
dx where dx = xr − xl and

dy = yr − yl

If y = mx + c then y = dy
dx x + c and so:

F (x , y) = ax + by + c = 0

F (x , y) = dy .x − dx .y + c = 0



Decision variable

Assuming dy
dx < 1 using symmetry, evalulate F at point M:

d = F (xp + 1, yp + 1
2) = a(xp + 1) + b(yp + 1

2) + c

Then d is a decision variable, if d ≤ 0 then E is chosen as the next
pixel, otherwise NE is chosen.



Updating the decision variable

Then to evaluate d for the next pixel, if we chose E:

d ′ = F (xp + 2, yp + 1
2) = a(xp + 2) + b(yp + 1

2) + c

Then since d = a(xp + 1) + b(yp + 1
2) + c, d ′ = d + a = d + dy



Updating the decision variable

If we chose NE:

d ′ = F (xp + 2, yp + 3
2) = a(xp + 2) + b(yp + 3

2) + c

Then since d = a(xp + 1) + b(yp + 1
2) + c,

d ′ = d + a + b = d + dy − dx



Initial value of d

The line starts from (xl , yl), so:

dstart = F (xl + 1, yl +
1
2)

= a(xl + 1) + b(yl +
1
2) + c

= axl + byl + c + a +
b
2

= F (xl , yl) + a +
b
2

But since (xl , yl) is on the line, F (xl , yl) = 0, so:

dstart = dy − dx
2

Then to avoid floating point operations, we multiply d by 2.



Decision variables

After we multiply by 2, d = 2(ax + by + c).

dstart = 2dy − dx
d ′E = d + 2dy

d ′NE = d + 2dy − 2dx

Then we only need integer operations



Summary of the mid-point algorithm

I Start at first endpoint
I Calculate initial value for d
I Decide between two next pixels based on decision variable
I Update the decision based upon which pixel is chosen
I Iterate



Midpoint algorithm



Overview

I Line rasterisation
I Polygon rasterisation
I Mean value coordinates
I Decomposing polygons



Scanline algorithm

I Fill pixels within a polygon scanline by scanline



Scanline algorithm

On every scanline:
I Find intersections of scan

line with all edges of the
polygon

I Sort intersections in
increasing order of x
coordinate

I Fill in pixels between all
pairs of intersections

Works with concave polygons



Span extrema

Only turn on pixels that have their centre interior to the polygon

I Otherwise pixels overlap with adjacent polygons

This is done by rounding up values on left edges and down on right
edges



Scanline algorithm
Pros:

I Simple

Cons:

I Hard to parallelise efficiently
I Special cases can occur and require exception handling



Barycentric coordinates for triangles

I Allow us to check whether a pixel is inside or outside a triangle
I Makes it easy to interpolate attributes between vertices
I Used in GPUs
I Easy to parallelise



Barycentric coordinates for triangles

Given a 2D triangle with vertices p0, p1, p2. For any point in the
plane p:

p = p0 + β(p1 − p0) + γ(p2 − p0)

= (1− β − γ)p0 + βp1 + γp2

= αp0 + βp1 + γp2

α+ β + γ = 1



Barycentric coordinates for triangles

The values α, β, γ ∈ [0, 1] if and only if p is inside the triangle.

α, β, γ are the barycentric coordinates of the point p.



Calculating barycentric coordinates

If the triangle is composed of p0 = (x0, y0), p1 = (x1, y1),
p2 = (x2, y2), then for a point (x , y):

α = f12(x ,y)
f12(x0,y0)

, β = f20(x ,y)
f20(x1,y1)

γ = f01(x ,y)
f01(x2,y2)

where fab = (ya − yb)x + (xb − xa)y + xayb − xbya



Bounding box of a triangle

We calculate a bounding box around the triangle, by taking the
minimum and maximum vertex coordinates in each direction:

xmin, ymin = min(x0, x1, x2),min(y0, y1, y2)

xmax , ymax = max(x0, x1, x2),max(y0, y1, y2)



Scanning inside the triangle

I For each pixel in the bounding box, compute the barycentric
coordinates

I Shade the pixel if all three values α, β, γ ∈ [0, 1]



Interpolation

Barycentric coordinates can be used to interpolate attributes of
triangle vertices, for example colour, depth, normal vectors or
texture coordinates.



Interpolation of colour

Gouraud shading:

I Calculate colour at vertices and interpolate the colour over
the surface



Interpolation of depth

I When triangles overlap each other, depth needs to be
calculated at each pixel in case the intersect

I Calculate using barycentric coordinates
I Used in Z-buffering



Exercise

I What are the barycentric
coordinates of A and B?

I What is the surface depth
(Z coordinate) at B

γ = (y0−y1)x+(x1−x0)y+x0y1−x1y0
(y0−y1)x2+(x1−x0)y2+x0y1−x1y0

β = (y0−y2)x+(x2−x0)y+x0y2−x2y0
(y0−y2)x2+(x2−x0)y2+x0y2−x2y0



Exercise

Barycentric coordinates
I A = (1

2 ,
5
8 ,−

1
8)

I B = (1
3 ,

1
3 ,

1
3)

Depth at B = 5
3



Shape editing

We can apply the same barycentric coordinates within a triangle
when its shape is edited



General polygons

Barycentric coordinates for polygons with more vertices:

v =

∑
i wi pi∑

i wi

Barycentric coordinates for 3D meshes:

I Mean value coordinates
I Harmonic coordinates (generalised barycentric coordinates)



Shape editing



Mean value coordinates

Coordinates that can:

I smoothly interpolate boundary values
I works with concave polygons
I works in 3D

wi =
tanαi−1/2+tanαi/2

‖vi−v0‖

!I<[�6<YkI�
]]gGQ[<jIh

£��O]]G�<[G�hZ]]jP�D<gsEI[jgQE�E]]gGQ[<jIh�
jP<j�E<[
£hZ]]jPYs�Q[jIgd]Y<jI�jPI�D]k[G<gs�p<YkIh
£�Yh]�q]gXh�qQjP�E][E<pI�d]YsO][h
£0PIgI�Qh�<Yh]�<�Ä��pIghQ][



Mean value coordinates

I Can interpolate convex and concave polygons
I Smoothly interpolates the interior as well as the exterior



Mean value coordinates

I Can interpolate convex and concave polygons
I Smoothly interpolates the interior as well as the exterior



Mean value coordinates

I Can be computed in 3D
I Applicable for mesh editing



Overview

I Line rasterisation
I Polygon rasterisation
I Mean value coordinates
I Decomposing polygons



Polygon decomposition

For polygons with more than three vertices, we usually decompose
them into triangles



Polygon decomposition

Algorithm:

I Find leftmost vertex and label it A
I Compose potential triangle out of A and adjacent vertices B

and C
I Check to see if another point of the polygon is inside the

triangle ABC
I If all other points are outside ABC, remove ABC from the

polygon and proceed with next leftmost vertex



Polygon decomposition

I Left most vertex is A
I Form a triangle between A and the adjacent B and C
I Check if all other vertices are outside this triangle



Polygon decomposition

If a vertex is inside, split the polygon by the inside vertex and point
A and continue:



Polygon decomposition

The new edge may split the polygon in two. If so recurse over each
polygon:

Split into ABCDE and AEFGH.



Summary

Rasterisation:

I Line rasterisation, midpoint algorithm
I Triangle rasterisation, scanline algorithm, barycentric

coordinates
I Mean value coordinates
I Polygon decomposistion into triangles



References
Midpoint and scanline algorithm:

I Foley Chapter 3.2, 3.5, 3.6

Barycentric coordinates:

I Shirley Chapter 2.7

Mean value coordinates:

I Floater, M. S. Mean value coordinates. Computer Aided
Geometric Design, 20(1), 19–27, 2003

I Ju, T., Schaefer, S., & Warren, J. Mean value coordinates for
closed triangular meshes. ACM Transactions on Graphics,
24(3), 561–566, 2005.

Polygon decomposition:

I http://www.siggraph.org/education/materials/
HyperGraph/scanline/outprims/polygon1.htm

http://www.siggraph.org/education/materials/HyperGraph/scanline/outprims/polygon1.htm
http://www.siggraph.org/education/materials/HyperGraph/scanline/outprims/polygon1.htm

