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Overview

Line rasterisation
Polygon rasterisation
Mean value coordinates
Decomposing polygons



Rasterisation

» After projection, polygons are still described in continuous
screen coordinates

» We need to use these polygons to colour in pixels on the screen
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Rasterising lines

We need to convert a line described in a continuous coordinate
system into a set of discrete pixels

Discrete approximation
to ideal line




Simple line drawing

Linear algebra:
y=mx+b
A very simple approach:

» Increment x, calculate new vy
» Cast x and y to integers




Simple line drawing

» For lines where m < 1 this
seems to work well

» When m > 1 this doesn't
work, the line becomes

discontinuous




Symmetry

If m <1 increment along the x axis, otherwise when m > 1,
increment along y axis

» This still requires a lot of floating point arithmetic



Midpoint algorithm

lterate over steps, having lit a pixel (x,, y,) at step p:

> Check where the line intersects x4 1
» Colour in (Xp11, ¥p) Of (Xp+1, Yp+1) depending on which is
closer to the intersection




Testing for the side of a line

» Assume the line is between (x/ y;) and (xr, yr)

» The slope of the line will be ¢ 7 where dx = x, — x; and
dy = yr—

dyx+cand SO:

If y = mx 4 c then y =
F(x,y)=ax+by+c=0

F(x,y)=dy.x —dx.y+c=0



Decision variable
Assuming % < 1 using symmetry, evalulate F at point M:
d=F(xo+1,yp+3) =alxp+ 1)+ by, +3) + ¢

Then d is a decision variable, if d < 0 then E is chosen as the next
pixel, otherwise NE is chosen.




Updating the decision variable

"hen to evaluate d for the next pixel, if we chose E:
d' = F(xp +2,yp +3) = alxp +2) + b(yp + 3) + C
Then since d = a(x, + 1)+ b(yp+3)+c, d =d+a=d+dy




Updating the decision variable
If we chose NE:

d' = F(xp +2,yp+ 3) = a(xp +2) + b(yp + 3) +

Then since d = a(x, + 1) + b(y, + 3) + ¢,
d=d+a+b=d+dy— dx




Initial value of d

The line starts from (x;, y;), so:
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But since (x;, y;) is on the line, F(x;,y;) = 0, so:

dstart = dy — %

Then to avoid floating point operations, we multiply d by 2.



Decision variables

After we multiply by 2, d = 2(ax + by + ¢).

dstart — 2dy — dx
d- = d-+2dy
die = d-+2dy — 2dx

Then we only need integer operations



Summary of the mid-point algorithm

Start at first endpoint

Calculate initial value for d

Decide between two next pixels based on decision variable
Update the decision based upon which pixel is chosen
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Midpoint algorithm

void midpointLine(int x1, int y1, int x2, int y2)
{

int dx=x2-x1; while{x < x2)
int dy=y2-y1; {
int d=2*dy-dx; if (d<=0) {
int incrE=2x*dy; d+=incrE;
int incrNE=2*(dy-dx) ; X++;
x=x1; }
y=y1,; else
drawPixel (x,V) ; {
d+=incrNE;
X++;
y++;
}
drawPixel (x,V) ;
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Scanline algorithm

» Fill pixels within a polygon scanline by scanline




Scanline algorithm

On every scanline:

» Find intersections of scan
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Span extrema

Only turn on pixels that have their centre interior to the polygon

» Otherwise pixels overlap with adjacent polygons
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This is done by rounding up values on left edges and down on right
edges



Scanline algorithm
Pros:

» Simple
Cons:

» Hard to parallelise efficiently
» Special cases can occur and require exception handling

» sliver: not even a single pixel wide
—————E



Barycentric coordinates for triangles

Allow us to check whether a pixel is inside or outside a triangle

Makes it easy to interpolate attributes between vertices
Used in GPUs

Easy to parallelise
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Barycentric coordinates for triangles

Given a 2D triangle with vertices pg, p1, p2>. For any point in the
plane p:

F
p = po+B(p1—po)+ (P2 — po)
= (L=B8=7)po+Bp1+p2 P
= apo + fp1+yp2 1
at+f+y=1
P apo + Bp1 + Y2



Barycentric coordinates for triangles

he values «, 8, € [0, 1] if and only if p is inside the triangle.

«, 3,7 are the barycentric coordinates of the point p.
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Calculating barycentric coordinates

If the triangle is composed of pg = (x0, Vo), p1 = (X1, Y1),
p2 = (x2, y2), then for a point (x, y):

fi2(x,y) B = fo(x,y) A _ _fou(x,y)
f12(x0,¥0) foo (X1,Y1) fo1(x2,y2)

O =

where fop = (Va — Vb)X + (X — Xa)y + XaVp — Xb V3



Bounding box of a triangle

We calculate a bounding box around the triangle, by taking the
minimum and maximum vertex coordinates in each direction:

Xmins Ymin = min(xo, X1, X2)7 min()/Oa Y1, )/2)

Xmaxy Ymax = max(xo, X1, X2)7 max(yo, Y1, )/2)




Scanning inside the triangle

» For each pixel in the bounding box, compute the barycentric
coordinates

» Shade the pixel if all three values o, 3,y € [0, 1]




Interpolation

Barycentric coordinates can be used to interpolate attributes of
triangle vertices, for example colour, depth, normal vectors or
texture coordinates.
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Interpolation of colour

Gouraud shading:

» Calculate colour at vertices and interpolate the colour over the
surface
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acl+Pc2 +yc3
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Interpolation of depth

» When triangles overlap each other, depth needs to be
calculated at each pixel in case the intersect

» Calculate using barycentric coordinates
» Used in Z-buffering

d1’
o'd1’+B’d2 +y



Exercise

(1.5.2) » What are the barycentric
| coordinates of A and B?

» What is the surface depth (Z
coordinate) at B

B(2,2) (5.1.3) — (Yo—y1)x+(x1—x0)y+xoy1—Xx1Y0

- (YO - )Xz +(X1 —X0 )Y2 +XoY1—X1Y0

(00,0
} A(3,0) B = (Yo—y2)x+(x2—x0) y+X0y2 —X2¥0
(Yo—y2)x2o+(x2—x0) y2+X0y2—X2 Y0




Exercise

(.1,5,2)
Barycentric coordinates
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A(3,0)



Shape editing

We can apply the same barycentric coordinates within a triangle
when its shape is edited




General polygons

Barycentric coordinates for polygons with more vertices:

Barycentric coordinates for 3D meshes:

» Mean value coordinates
» Harmonic coordinates (generalised barycentric coordinates)



Shape editing




Mean value coordinates

Coordinates that can:

» smoothly interpolate boundary values
» works with concave polygons
» works in 3D
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Mean value coordinates

» Can interpolate convex and concave polygons
» Smoothly interpolates the interior as well as the exterior



Mean value coordinates

» Can interpolate convex and concave polygons
» Smoothly interpolates the interior as well as the exterior
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Mean value coordinates

» Can be computed in 3D
» Applicable for mesh editing
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Polygon decomposition

For polygons with more than three vertices, we usually decompose
them into triangles

Simple for convex

Concave is difficult



Polygon decomposition

Algorithm:

» Find leftmost vertex and label it A

» Compose potential triangle out of A and adjacent vertices B
and C

» Check to see if another point of the polygon is inside the

triangle ABC
» If all other points are outside ABC, remove ABC from the

polygon and proceed with next leftmost vertex



Polygon decomposition

> Left most vertex is A
» Form a triangle between A and the adjacent B and C
» Check if all other vertices are outside this triangle
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Vertex D fails test



Polygon decomposition

If a vertex is inside, split the polygon by the inside vertex and point
A and continue:

A
Test ABD as before



Polygon decomposition

The new edge may split the polygon in two. If so recurse over each
polygon:

H
G
Split into ABCDE and AEFGH



Summary

Rasterisation:

» Line rasterisation, midpoint algorithm

» Triangle rasterisation, scanline algorithm, barycentric
coordinates

» Mean value coordinates
» Polygon decomposistion into triangles
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