Computer Graphics 6 - Rasterisation

Tom Thorne

Slides courtesy of Taku Komura www.inf.ed.ac.uk/teaching/courses/cg

Overview

Line rasterisation

- Polygon rasterisation
- Mean value coordinates
- Decomposing polygons

Rasterisation

- After projection, polygons are still described in continuous screen coordinates
- ► We need to use these polygons to colour in pixels on the screen

Rasterising lines

We need to convert a line described in a continuous coordinate system into a set of discrete pixels

Simple line drawing

Linear algebra: y = mx + bA very simple approach:

- Increment x, calculate new y
- Cast x and y to integers

Simple line drawing

- For lines where $m \leq 1$ this seems to work well
- When m > 1 this doesn't work, the line becomes discontinuous

Symmetry

If $m \leq 1$ increment along the x axis, otherwise when m > 1, increment along y axis

This still requires a lot of floating point arithmetic

Midpoint algorithm

Iterate over steps, having lit a pixel (x_p, y_p) at step p:

- Check where the line intersects x_{p+1}
- Colour in (x_{p+1}, y_p) or (x_{p+1}, y_{p+1}) depending on which is closer to the intersection

Testing for the side of a line

- Assume the line is between (x_l, y_l) and (x_r, y_r)
- The slope of the line will be $\frac{dy}{dx}$ where $dx = x_r x_l$ and $dy = y_r y_l$

If
$$y = mx + c$$
 then $y = \frac{dy}{dx}x + c$ and so:
 $F(x, y) = ax + by + c = 0$
 $F(x, y) = dy.x - dx.y + c = 0$

Decision variable

Assuming $\frac{dy}{dx} < 1$ using symmetry, evalulate F at point M:

$$d = F(x_p + 1, y_p + \frac{1}{2}) = a(x_p + 1) + b(y_p + \frac{1}{2}) + c$$

Then d is a decision variable, if $d \le 0$ then E is chosen as the next pixel, otherwise NE is chosen.

Updating the decision variable

Then to evaluate d for the next pixel, if we chose E:

$$d' = F(x_p + 2, y_p + \frac{1}{2}) = a(x_p + 2) + b(y_p + \frac{1}{2}) + c$$

Then since $d = a(x_p + 1) + b(y_p + \frac{1}{2}) + c$, d' = d + a = d + dy

Updating the decision variable

If we chose NE:

$$d' = F(x_p + 2, y_p + \frac{3}{2}) = a(x_p + 2) + b(y_p + \frac{3}{2}) + c$$

Then since $d = a(x_p + 1) + b(y_p + \frac{1}{2}) + c$,
 $d' = d + a + b = d + dy - dx$

Initial value of d

The line starts from (x_l, y_l) , so:

$$d_{start} = F(x_{l} + 1, y_{l} + \frac{1}{2})$$

= $a(x_{l} + 1) + b(y_{l} + \frac{1}{2}) + c$
= $ax_{l} + by_{l} + c + a + \frac{b}{2}$
= $F(x_{l}, y_{l}) + a + \frac{b}{2}$

But since (x_l, y_l) is on the line, $F(x_l, y_l) = 0$, so: $d_{start} = dy - \frac{dx}{2}$

Then to avoid floating point operations, we multiply d by 2.

Decision variables

After we multiply by 2, d = 2(ax + by + c).

$$d_{start} = 2dy - dx$$

$$d'_E = d + 2dy$$

$$d'_{NE} = d + 2dy - 2dx$$

Then we only need integer operations

Summary of the mid-point algorithm

- Start at first endpoint
- Calculate initial value for d
- Decide between two next pixels based on decision variable
- Update the decision based upon which pixel is chosen
- Iterate

Midpoint algorithm

```
void midpointLine(int x1, int y1, int x2, int y2)
{
int dx=x2-x1;
                                   while \{x < x2\}
int dy=y2-y1;
                                    {
int d=2*dy-dx;
                                        if (d<=0) {
int incrE=2*dy;
                                                d+=incrE;
int incrNE=2*(dy-dx);
                                                 x++;
x=x1;
                                            }
y=y1;
                                        else
drawPixel(x,y);
                                        {
                                            d+=incrNE;
```

}

}

x++; y++; } drawPixel(x,y);

Overview

- Line rasterisation
- Polygon rasterisation
- Mean value coordinates
- Decomposing polygons

Scanline algorithm

Fill pixels within a polygon scanline by scanline

Scanline algorithm

On every scanline:

- Find intersections of scan line with all edges of the polygon
- Sort intersections in increasing order of x coordinate
- Fill in pixels between all pairs of intersections

Works with concave polygons

Span extrema

Only turn on pixels that have their centre interior to the polygon

Otherwise pixels overlap with adjacent polygons

This is done by rounding up values on left edges and down on right edges

Scanline algorithm

Pros:

Simple

Cons:

- Hard to parallelise efficiently
- Special cases can occur and require exception handling

Barycentric coordinates for triangles

- Allow us to check whether a pixel is inside or outside a triangle
- Makes it easy to interpolate attributes between vertices
- Used in GPUs
- Easy to parallelise

Barycentric coordinates for triangles

Given a 2D triangle with vertices p_0 , p_1 , p_2 . For any point in the plane p:

$$P_{0} = p_{0} + \beta(p_{1} - p_{0}) + \gamma(p_{2} - p_{0})$$

$$= (1 - \beta - \gamma)p_{0} + \beta p_{1} + \gamma p_{2}$$

$$= \alpha p_{0} + \beta p_{1} + \gamma p_{2}$$

$$\alpha + \beta + \gamma = 1$$

$$P_{0}$$

$$(\alpha, \beta, \gamma) = P_{1}$$

$$P_{1}$$

$$P_{2} = \alpha p_{0} + \beta p_{1} + \gamma p_{2}$$

Barycentric coordinates for triangles

The values $\alpha, \beta, \gamma \in [0, 1]$ if and only if p is inside the triangle.

 α, β, γ are the *barycentric coordinates* of the point *p*.

Calculating barycentric coordinates

If the triangle is composed of $p_0 = (x_0, y_0)$, $p_1 = (x_1, y_1)$, $p_2 = (x_2, y_2)$, then for a point (x, y):

$$\alpha = \frac{f_{12}(x,y)}{f_{12}(x_0,y_0)}, \ \beta = \frac{f_{20}(x,y)}{f_{20}(x_1,y_1)} \ \gamma = \frac{f_{01}(x,y)}{f_{01}(x_2,y_2)}$$

where $f_{ab} = (y_a - y_b)x + (x_b - x_a)y + x_ay_b - x_by_a$

Bounding box of a triangle

We calculate a bounding box around the triangle, by taking the minimum and maximum vertex coordinates in each direction:

 $x_{min}, y_{min} = \min(x_0, x_1, x_2), \min(y_0, y_1, y_2)$ $x_{max}, y_{max} = \max(x_0, x_1, x_2), \max(y_0, y_1, y_2)$

Scanning inside the triangle

- For each pixel in the bounding box, compute the barycentric coordinates
- Shade the pixel if all three values $\alpha, \beta, \gamma \in [0, 1]$

Interpolation

Barycentric coordinates can be used to interpolate attributes of triangle vertices, for example colour, depth, normal vectors or texture coordinates.

$$p_{\alpha\beta,\gamma}^{p}$$
 p1
(α,β,γ)
 $\alpha p0+\beta p1+\gamma p2$
p2

Interpolation of colour

Gouraud shading:

Calculate colour at vertices and interpolate the colour over the surface

Interpolation of depth

- When triangles overlap each other, depth needs to be calculated at each pixel in case the intersect
- Calculate using barycentric coordinates
- Used in Z-buffering

Exercise

- What are the barycentric coordinates of A and B?
- What is the surface depth (Z coordinate) at B

$$\gamma = \frac{(y_0 - y_1)x + (x_1 - x_0)y + x_0y_1 - x_1y_0}{(y_0 - y_1)x_2 + (x_1 - x_0)y_2 + x_0y_1 - x_1y_0}$$

$$\beta = \frac{(y_0 - y_2)x + (x_2 - x_0)y + x_0y_2 - x_2y_0}{(y_0 - y_2)x_2 + (x_2 - x_0)y_2 + x_0y_2 - x_2y_0}$$

Exercise

Barycentric coordinates

•
$$A = (\frac{1}{2}, \frac{5}{8}, -\frac{1}{8})$$

• $B = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$

Depth at $B = \frac{5}{3}$

Shape editing

We can apply the same barycentric coordinates within a triangle when its shape is edited

General polygons

Barycentric coordinates for polygons with more vertices:

Barycentric coordinates for 3D meshes:

- Mean value coordinates
- Harmonic coordinates (generalised barycentric coordinates)

Shape editing

Coordinates that can:

- smoothly interpolate boundary values
- works with concave polygons
- works in 3D

- Can interpolate convex and concave polygons
- Smoothly interpolates the interior as well as the exterior

- Can interpolate convex and concave polygons
- Smoothly interpolates the interior as well as the exterior

- Can be computed in 3D
- Applicable for mesh editing

Overview

- Line rasterisation
- Polygon rasterisation
- Mean value coordinates
- Decomposing polygons

For polygons with more than three vertices, we usually decompose them into triangles

Concave is difficult

Algorithm:

- Find leftmost vertex and label it A
- Compose potential triangle out of A and adjacent vertices B and C
- Check to see if another point of the polygon is inside the triangle ABC
- If all other points are outside ABC, remove ABC from the polygon and proceed with next leftmost vertex

- Left most vertex is A
- Form a triangle between A and the adjacent B and C
- Check if all other vertices are outside this triangle

Vertex D fails test

If a vertex is inside, split the polygon by the inside vertex and point A and continue:

Test ABD as before

The new edge may split the polygon in two. If so recurse over each polygon:

Summary

Rasterisation:

- Line rasterisation, midpoint algorithm
- Triangle rasterisation, scanline algorithm, barycentric coordinates
- Mean value coordinates
- Polygon decomposistion into triangles

References

Midpoint and scanline algorithm:

► Foley Chapter 3.2, 3.5, 3.6

Barycentric coordinates:

Shirley Chapter 2.7

Mean value coordinates:

- Floater, M. S. Mean value coordinates. Computer Aided Geometric Design, 20(1), 19–27, 2003
- Ju, T., Schaefer, S., & Warren, J. Mean value coordinates for closed triangular meshes. ACM Transactions on Graphics, 24(3), 561–566, 2005.

Polygon decomposition:

http://www.siggraph.org/education/materials/ HyperGraph/scanline/outprims/polygon1.htm