Computer Graphics 6 - Rasterisation

Tom Thorne

Slides courtesy of Taku Komura
www.inf.ed.ac.uk /teaching/courses/cg

Overview

Line rasterisation
Polygon rasterisation
Mean value coordinates
Decomposing polygons

Rasterisation

» After projection, polygons are still described in continuous
screen coordinates

» We need to use these polygons to colour in pixels on the screen

e
r____.__...--""

il

Rasterising lines

We need to convert a line described in a continuous coordinate
system into a set of discrete pixels

Discrete approximation
to ideal line

Simple line drawing

Linear algebra:
y=mx+b
A very simple approach:

» Increment x, calculate new vy
» Cast x and y to integers

Simple line drawing

» For lines where m < 1 this
seems to work well

» When m > 1 this doesn't
work, the line becomes

discontinuous

Symmetry

If m <1 increment along the x axis, otherwise when m > 1,
increment along y axis

» This still requires a lot of floating point arithmetic

Midpoint algorithm

lterate over steps, having lit a pixel (x,, y,) at step p:

> Check where the line intersects x4 1
» Colour in (Xp11, ¥p) Of (Xp+1, Yp+1) depending on which is
closer to the intersection

Testing for the side of a line

» Assume the line is between (x/ y;) and (xr, yr)

» The slope of the line will be ¢ 7 where dx = x, — x; and
dy = yr—

dyx+cand SO:

If y = mx 4 c then y =
F(x,y)=ax+by+c=0

F(x,y)=dy.x —dx.y+c=0

Decision variable
Assuming % < 1 using symmetry, evalulate F at point M:
d=F(xo+1,yp+3) =alxp+ 1)+ by, +3) + ¢

Then d is a decision variable, if d < 0 then E is chosen as the next
pixel, otherwise NE is chosen.

Updating the decision variable

"hen to evaluate d for the next pixel, if we chose E:
d' = F(xp +2,yp +3) = alxp +2) + b(yp + 3) + C
Then since d = a(x, + 1)+ b(yp+3)+c, d =d+a=d+dy

Updating the decision variable
If we chose NE:

d' = F(xp +2,yp+ 3) = a(xp +2) + b(yp + 3) +

Then since d = a(x, + 1) + b(y, + 3) + ¢,
d=d+a+b=d+dy— dx

Initial value of d

The line starts from (x;, y;), so:

|
1

X
I
=

R
|

|

dstart

|
2
X

|
=
|
=
<

|

But since (x;, y;) is on the line, F(x;,y;) = 0, so:

dstart = dy — %

Then to avoid floating point operations, we multiply d by 2.

Decision variables

After we multiply by 2, d = 2(ax + by + ¢).

dstart — 2dy — dx
d- = d-+2dy
die = d-+2dy — 2dx

Then we only need integer operations

Summary of the mid-point algorithm

Start at first endpoint

Calculate initial value for d

Decide between two next pixels based on decision variable
Update the decision based upon which pixel is chosen

vV v v v ¥V

terate

Midpoint algorithm

void midpointLine(int x1, int y1, int x2, int y2)
{

int dx=x2-x1; while{x < x2)
int dy=y2-y1; {
int d=2*dy-dx; if (d<=0) {
int incrE=2x*dy; d+=incrE;
int incrNE=2*(dy-dx) ; X++;
x=x1; }
y=y1,; else
drawPixel (x,V) ; {
d+=incrNE;
X++;
y++;
}
drawPixel (x,V) ;

-

Overview

Line rasterisation

Polygon rasterisation
Mean value coordinates
Decomposing polygons

Scanline algorithm

» Fill pixels within a polygon scanline by scanline

Scanline algorithm

On every scanline:

» Find intersections of scan

- : 12
ine with all edges of the -
10 - F
nolygon |
]] _ B - SCan
» Sort intersections in | 4 b . 4 line
. . - ;
increasing order of x c
. d |
coordinate \f/
iy . . ”, » A
> Fill in pixels between all pairs C A% . J
= — ==K B i
of intersections 2 4 6 B 10 12 14

Works with concave polygons

Span extrema

Only turn on pixels that have their centre interior to the polygon

» Otherwise pixels overlap with adjacent polygons

iiiii

iiiiiiiii
iiiii

. 1) [P P
imj it

-

This is done by rounding up values on left edges and down on right
edges

Scanline algorithm
Pros:

» Simple
Cons:

» Hard to parallelise efficiently
» Special cases can occur and require exception handling

» sliver: not even a single pixel wide
—————E

Barycentric coordinates for triangles

Allow us to check whether a pixel is inside or outside a triangle

Makes it easy to interpolate attributes between vertices
Used in GPUs

Easy to parallelise

v v v V¥

Barycentric coordinates for triangles

Given a 2D triangle with vertices pg, p1, p2>. For any point in the
plane p:

F
p = po+B(p1—po)+ (P2 — po)
= (L=B8=7)po+Bp1+p2 P
= apo + fp1+yp2 1
at+f+y=1
P apo + Bp1 + Y2

Barycentric coordinates for triangles

he values «, 8, € [0, 1] if and only if p is inside the triangle.

«, 3,7 are the barycentric coordinates of the point p.

" Io| le|
, B = Y =
P 2 T e T e

_ lal

Calculating barycentric coordinates

If the triangle is composed of pg = (x0, Vo), p1 = (X1, Y1),
p2 = (x2, y2), then for a point (x, y):

fi2(x,y) B = fo(x,y) A _ _fou(x,y)
f12(x0,¥0) foo (X1,Y1) fo1(x2,y2)

O =

where fop = (Va — Vb)X + (X — Xa)y + XaVp — Xb V3

Bounding box of a triangle

We calculate a bounding box around the triangle, by taking the
minimum and maximum vertex coordinates in each direction:

Xmins Ymin = min(xo, X1, X2)7 min()/Oa Y1,)/2)

Xmaxy Ymax = max(xo, X1, X2)7 max(yo, Y1,)/2)

Scanning inside the triangle

» For each pixel in the bounding box, compute the barycentric
coordinates

» Shade the pixel if all three values o, 3,y € [0, 1]

Interpolation

Barycentric coordinates can be used to interpolate attributes of
triangle vertices, for example colour, depth, normal vectors or
texture coordinates.

pt. pl

apO+ppl +yp2

p2

Interpolation of colour

Gouraud shading:

» Calculate colour at vertices and interpolate the colour over the
surface

cl)

acl+Pc2 +yc3

c3

Interpolation of depth

» When triangles overlap each other, depth needs to be
calculated at each pixel in case the intersect

» Calculate using barycentric coordinates
» Used in Z-buffering

d1’
o'd1’+B’d2 +y

Exercise

(1.5.2) » What are the barycentric
| coordinates of A and B?

» What is the surface depth (Z
coordinate) at B

B(2,2) (5.1.3) — (Yo—y1)x+(x1—x0)y+xoy1—Xx1Y0

- (YO -)Xz +(X1 —X0)Y2 +XoY1—X1Y0

(00,0
} A(3,0) B = (Yo—y2)x+(x2—x0) y+X0y2 —X2¥0
(Yo—y2)x2o+(x2—x0) y2+X0y2—X2 Y0

Exercise

(.1,5,2)
Barycentric coordinates
e e
s " 55 3)
> (5,1, 3) Depth at B = 3
0,0,0)

A(3,0)

Shape editing

We can apply the same barycentric coordinates within a triangle
when its shape is edited

General polygons

Barycentric coordinates for polygons with more vertices:

Barycentric coordinates for 3D meshes:

» Mean value coordinates
» Harmonic coordinates (generalised barycentric coordinates)

Shape editing

Mean value coordinates

Coordinates that can:

» smoothly interpolate boundary values
» works with concave polygons
» works in 3D

tan aj_1/24tan «; /2
lvi—vol

W; =

Mean value coordinates

» Can interpolate convex and concave polygons
» Smoothly interpolates the interior as well as the exterior

Mean value coordinates

» Can interpolate convex and concave polygons
» Smoothly interpolates the interior as well as the exterior

T

Mean value coordinates

» Can be computed in 3D
» Applicable for mesh editing

Overview

Line rasterisation
Polygon rasterisation
Mean value coordinates
Decomposing polygons

Polygon decomposition

For polygons with more than three vertices, we usually decompose
them into triangles

Simple for convex

Concave is difficult

Polygon decomposition

Algorithm:

» Find leftmost vertex and label it A

» Compose potential triangle out of A and adjacent vertices B
and C

» Check to see if another point of the polygon is inside the

triangle ABC
» If all other points are outside ABC, remove ABC from the

polygon and proceed with next leftmost vertex

Polygon decomposition

> Left most vertex is A
» Form a triangle between A and the adjacent B and C
» Check if all other vertices are outside this triangle

\

B

Vertex D fails test

Polygon decomposition

If a vertex is inside, split the polygon by the inside vertex and point
A and continue:

A
Test ABD as before

Polygon decomposition

The new edge may split the polygon in two. If so recurse over each
polygon:

H
G
Split into ABCDE and AEFGH

Summary

Rasterisation:

» Line rasterisation, midpoint algorithm

» Triangle rasterisation, scanline algorithm, barycentric
coordinates

» Mean value coordinates
» Polygon decomposistion into triangles

References
Midpoint and scanline algorithm:

» Foley Chapter 3.2, 3.5, 3.6
Barycentric coordinates:
» Shirley Chapter 2.7

Mean value coordinates:

» Floater, M. S. Mean value coordinates. Computer Aided
Geometric Design, 20(1), 19-27, 2003

» Ju, T. Schaefer, S., & Warren, J. Mean value coordinates for
closed triangular meshes. ACM Transactions on Graphics,

24(3), 561-566, 2005.

Polygon decomposition:

» http://www.siggraph.org/education/materials/
HyperGraph/scanline/outprims/polygonl.htm

