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Overview

I
Line rasterisation

I Polygon rasterisation
I Mean value coordinates
I Decomposing polygons



Rasterisation

I After projection, polygons are still described in continuous
screen coordinates

I We need to use these polygons to colour in pixels on the screen



Rasterising lines

We need to convert a line described in a continuous coordinate
system into a set of discrete pixels

Discrete approximation
to ideal line



Simple line drawing

Linear algebra:
y = mx + b

A very simple approach:
I Increment x, calculate new y
I Cast x and y to integers
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Simple line drawing

I For lines where m Æ 1 this
seems to work well

I When m > 1 this doesn’t
work, the line becomes
discontinuous



Symmetry
If m Æ 1 increment along the x axis, otherwise when m > 1,
increment along y axis

I This still requires a lot of floating point arithmetic
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Midpoint algorithm
Iterate over steps, having lit a pixel (x

p

, y

p

) at step p:

I Check where the line intersects x

p+1
I Colour in (x

p+1, y

p

) or (x
p+1, y

p+1) depending on which is
closer to the intersection
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yp+1

xp+1



Testing for the side of a line

I Assume the line is between (x
l

, y

l

) and (x
r

, y

r

)

I The slope of the line will be dy

dx

where dx = x

r

≠ x

l

and
dy = y

r

≠ y

l

If y = mx + c then y = dy

dx

x + c and so:
F (x , y) = ax + by + c = 0
F (x , y) = dy .x ≠ dx .y + c = 0



Decision variable
Assuming dy

dx

< 1 using symmetry, evalulate F at point M:
d = F (x

p

+ 1, y

p

+ 1
2) = a(x

p

+ 1) + b(y
p

+ 1
2) + c

Then d is a decision variable, if d Æ 0 then E is chosen as the next
pixel, otherwise NE is chosen.
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Updating the decision variable
Then to evaluate d for the next pixel, if we chose E:
d
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Updating the decision variable
If we chose NE:
d

Õ = F (x
p

+ 2, y

p
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+ 3
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Then since d = a(x
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2) + c ,
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Õ = d + a + b = d + dy ≠ dx
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Initial value of d

The line starts from (x
l

, y

l

), so:

d
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But since (x
l

, y

l

) is on the line, F (x
l

, y

l

) = 0, so:
d

start

= dy ≠ dx

2

Then to avoid floating point operations, we multiply d by 2.



Decision variables

After we multiply by 2, d = 2(ax + by + c).

d

start

= 2dy ≠ dx

d

Õ
E

= d + 2dy

d

Õ
NE

= d + 2dy ≠ 2dx

Then we only need integer operations



Summary of the mid-point algorithm

I Start at first endpoint
I Calculate initial value for d
I Decide between two next pixels based on decision variable
I Update the decision based upon which pixel is chosen
I Iterate



Midpoint algorithm

void midpointLine(int x1, int y1, int x2, int y2)
{
int dx=x2-x1;
int dy=y2-y1;
int d=2*dy-dx;
int incrE=2*dy;
int incrNE=2*(dy-dx);
x=x1;
y=y1;
drawPixel(x,y);

while{x < x2)
{

if (d<=0) {
d+=incrE;
x++;

}
else
{

d+=incrNE;
x++;
y++;

}
drawPixel(x,y);

}
}



Overview

I Line rasterisation
I

Polygon rasterisation

I Mean value coordinates
I Decomposing polygons



Scanline algorithm

I Fill pixels within a polygon scanline by scanline



Scanline algorithm

On every scanline:
I Find intersections of scan

line with all edges of the
polygon

I Sort intersections in
increasing order of x
coordinate

I Fill in pixels between all pairs
of intersections

Works with concave polygons



Span extrema

Only turn on pixels that have their centre interior to the polygon

I Otherwise pixels overlap with adjacent polygons

This is done by rounding up values on left edges and down on right
edges



Scanline algorithm
Pros:

I Simple

Cons:

I Hard to parallelise e�ciently
I Special cases can occur and require exception handling



Barycentric coordinates for triangles

I Allow us to check whether a pixel is inside or outside a triangle
I Makes it easy to interpolate attributes between vertices
I Used in GPUs
I Easy to parallelise



Barycentric coordinates for triangles

Given a 2D triangle with vertices p0, p1, p2. For any point in the
plane p:

p = p0 + —(p1 ≠ p0) + “(p2 ≠ p0)

= (1 ≠ — ≠ “)p0 + —p1 + “p2
= –p0 + —p1 + “p2

– + — + “ = 1
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Barycentric coordinates for triangles
The values –, —, “ œ [0, 1] if and only if p is inside the triangle.
–, —, “ are the barycentric coordinates of the point p.
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Calculating barycentric coordinates

If the triangle is composed of p0 = (x0, y0), p1 = (x1, y1),
p2 = (x2, y2), then for a point (x , y):

– = f12(x ,y)
f12(x0,y0)

, — = f20(x ,y)
f20(x1,y1)

“ = f01(x ,y)
f01(x2,y2)
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Bounding box of a triangle

We calculate a bounding box around the triangle, by taking the
minimum and maximum vertex coordinates in each direction:
x

min

, y

min

= min(x0, x1, x2), min(y0, y1, y2)

x

max

, y

max

= max(x0, x1, x2), max(y0, y1, y2)



Scanning inside the triangle

I For each pixel in the bounding box, compute the barycentric
coordinates

I Shade the pixel if all three values –, —, “ œ [0, 1]



Interpolation

Barycentric coordinates can be used to interpolate attributes of
triangle vertices, for example colour, depth, normal vectors or
texture coordinates.



Interpolation of colour

Gouraud shading:

I Calculate colour at vertices and interpolate the colour over the
surface



Interpolation of depth

I When triangles overlap each other, depth needs to be
calculated at each pixel in case the intersect

I Calculate using barycentric coordinates
I Used in Z-bu�ering



Exercise

I What are the barycentric
coordinates of A and B?

I What is the surface depth (Z
coordinate) at B

“ = (y0≠y1)x+(x1≠x0)y+x0y1≠x1y0
(y0≠y1)x2+(x1≠x0)y2+x0y1≠x1y0

— = (y0≠y2)x+(x2≠x0)y+x0y2≠x2y0
(y0≠y2)x2+(x2≠x0)y2+x0y2≠x2y0



Exercise

Barycentric coordinates
I

A = (1
2 , 5

8 , ≠1
8)

I
B = (1

3 , 1
3 , 1

3)

Depth at B = 5
3



Shape editing

We can apply the same barycentric coordinates within a triangle
when its shape is edited



General polygons

Barycentric coordinates for polygons with more vertices:

v =
q

i

w

i

p

iq
i

w

i

Barycentric coordinates for 3D meshes:

I Mean value coordinates
I Harmonic coordinates (generalised barycentric coordinates)



Shape editing



Mean value coordinates

Coordinates that can:

I smoothly interpolate boundary values
I works with concave polygons
I works in 3D
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Figure 1. Star-shaped polygon.

main purpose of this paper is to address this latter problem. We derive coordinates which
depend (infinitely) smoothly on the data points v0, v1, . . . , vk through a simple algebraic
formula.

Several researchers have studied closely related problems [9,11,14,15 ]. In the special
case that the polygon v1, . . . , vk is convex, Wachspress [14 ] found a solution in which the
coordinates can be expressed in terms of rational polynomials,

�i =
wi�k

j=1 wj

, wi =
A(vi�1, vi, vi+1)

A(vi�1, vi, v0)A(vi, vi+1, v0)
=

cot �i�1 + cot �i

||vi � v0||2
, (1.3)

where A(a, b, c) is the signed area of triangle [a, b, c] and �i�1 and �i are the angles shown in
Figure 1. The latter formulation in terms of angles is due to Meyer, Lee, Barr, and Desbrun
[9 ]. Of course these coordinates depend smoothly on the data points v0, v1, . . . , vk and
are therefore suitable when the polygon is convex. However, for star-shaped polygons the
coordinate �i in (1.3) can be negative, and, in fact, will be so precisely when �i�1 +�i > �.

Another set of previously found weights can be expressed as

�i =
wi�k

j=1 wj

, wi = cot �i�1 + cot �i. (1.4)

These weights arise from the standard piecewise linear finite element approximation to
the Laplace equation and appear in several books on numerical analysis, e.g. [7 ], and
probably go back to the work of Courant. They have since been used in the computer
graphics literature [10 ], [1 ]. However, for our purposes these weights su�er from the
same problem as the last ones, namely that they might be negative. The weight �i is
negative if and only if �i�1 + �i > �.

Another possible set of coordinates might be Sibson’s natural neighbour coordinates
[11 ], if we treated the points v1, . . . , vk as a set of scattered data points. However, despite
various other good properties, Sibson’s coordinates, like those of [2 ], su�er from being
defined piecewise, and have in general only C1 dependence on the point v0. Moreover,
several of Sibson’s coordinates might be zero, since the only non-zero ones would correspond
to Voronoi neighbours of v0.
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Mean value coordinates

I Can interpolate convex and concave polygons
I Smoothly interpolates the interior as well as the exterior



Mean value coordinates

I Can interpolate convex and concave polygons
I Smoothly interpolates the interior as well as the exterior



Mean value coordinates

I Can be computed in 3D
I Applicable for mesh editing



Overview

I Line rasterisation
I Polygon rasterisation
I Mean value coordinates
I

Decomposing polygons



Polygon decomposition

For polygons with more than three vertices, we usually decompose
them into triangles

Simple for convex

Concave is difficult



Polygon decomposition

Algorithm:

I Find leftmost vertex and label it A
I Compose potential triangle out of A and adjacent vertices B

and C
I Check to see if another point of the polygon is inside the

triangle ABC
I If all other points are outside ABC, remove ABC from the

polygon and proceed with next leftmost vertex



Polygon decomposition
I Left most vertex is A
I Form a triangle between A and the adjacent B and C
I Check if all other vertices are outside this triangle

A

B

C
D

Vertex D fails test



Polygon decomposition
If a vertex is inside, split the polygon by the inside vertex and point
A and continue:

A

B

C

D

Test ABD as before



Polygon decomposition

The new edge may split the polygon in two. If so recurse over each
polygon:

A

B C

D

Split into ABCDE and AEFGH

E F

GH



Summary

Rasterisation:

I Line rasterisation, midpoint algorithm
I Triangle rasterisation, scanline algorithm, barycentric

coordinates
I Mean value coordinates
I Polygon decomposistion into triangles
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