
Computer Graphics 6 - Rasterisation

Tom Thorne

Slides courtesy of Taku Komura
www.inf.ed.ac.uk/teaching/courses/cg

Overview

I
Line rasterisation

I Polygon rasterisation
I Mean value coordinates
I Decomposing polygons

Rasterisation

I After projection, polygons are still described in continuous
screen coordinates

I We need to use these polygons to colour in pixels on the screen

Rasterising lines

We need to convert a line described in a continuous coordinate
system into a set of discrete pixels

Discrete approximation
to ideal line

Simple line drawing

Linear algebra:
y = mx + b

A very simple approach:
I Increment x, calculate new y
I Cast x and y to integers

y = mx + c

x

y

c
m =

dy

dx

dx

dy

Simple line drawing

I For lines where m Æ 1 this
seems to work well

I When m > 1 this doesn’t
work, the line becomes
discontinuous

Symmetry
If m Æ 1 increment along the x axis, otherwise when m > 1,
increment along y axis

I This still requires a lot of floating point arithmetic

x

y

Midpoint algorithm
Iterate over steps, having lit a pixel (x

p

, y

p

) at step p:

I Check where the line intersects x

p+1
I Colour in (x

p+1, y

p

) or (x
p+1, y

p+1) depending on which is
closer to the intersection

xp

yp
yp+1

xp+1

Testing for the side of a line

I Assume the line is between (x
l

, y

l

) and (x
r

, y

r

)

I The slope of the line will be dy

dx

where dx = x

r

≠ x

l

and
dy = y

r

≠ y

l

If y = mx + c then y = dy

dx

x + c and so:
F (x , y) = ax + by + c = 0
F (x , y) = dy .x ≠ dx .y + c = 0

Decision variable
Assuming dy

dx

< 1 using symmetry, evalulate F at point M:
d = F (x

p

+ 1, y

p

+ 1
2) = a(x

p

+ 1) + b(y
p

+ 1
2) + c

Then d is a decision variable, if d Æ 0 then E is chosen as the next
pixel, otherwise NE is chosen.

xp

yp
y
p+1

xp+1

M
E

NE

Updating the decision variable
Then to evaluate d for the next pixel, if we chose E:
d

Õ = F (x
p

+ 2, y

p

+ 1
2) = a(x

p

+ 2) + b(y
p

+ 1
2) + c

Then since d = a(x
p

+ 1) + b(y
p

+ 1
2) + c , d

Õ = d + a = d + dy

xp

yp
y
p+1

xp+1

M
E

NE

Updating the decision variable
If we chose NE:
d

Õ = F (x
p

+ 2, y

p

+ 3
2) = a(x

p

+ 2) + b(y
p

+ 3
2) + c

Then since d = a(x
p

+ 1) + b(y
p

+ 1
2) + c ,

d

Õ = d + a + b = d + dy ≠ dx

xp

yp
y
p+1

xp+1

M

E

NE

Initial value of d

The line starts from (x
l

, y

l

), so:

d

start

= F (x
l

+ 1, y

l

+
1
2)

= a(x
l

+ 1) + b(y
l

+
1
2) + c

= ax

l

+ by

l

+ c + a +
b

2
= F (x

l

, y

l

) + a +
b

2

But since (x
l

, y

l

) is on the line, F (x
l

, y

l

) = 0, so:
d

start

= dy ≠ dx

2

Then to avoid floating point operations, we multiply d by 2.

Decision variables

After we multiply by 2, d = 2(ax + by + c).

d

start

= 2dy ≠ dx

d

Õ
E

= d + 2dy

d

Õ
NE

= d + 2dy ≠ 2dx

Then we only need integer operations

Summary of the mid-point algorithm

I Start at first endpoint
I Calculate initial value for d
I Decide between two next pixels based on decision variable
I Update the decision based upon which pixel is chosen
I Iterate

Midpoint algorithm

void midpointLine(int x1, int y1, int x2, int y2)
{
int dx=x2-x1;
int dy=y2-y1;
int d=2*dy-dx;
int incrE=2*dy;
int incrNE=2*(dy-dx);
x=x1;
y=y1;
drawPixel(x,y);

while{x < x2)
{

if (d<=0) {
d+=incrE;
x++;

}
else
{

d+=incrNE;
x++;
y++;

}
drawPixel(x,y);

}
}

Overview

I Line rasterisation
I

Polygon rasterisation

I Mean value coordinates
I Decomposing polygons

Scanline algorithm

I Fill pixels within a polygon scanline by scanline

Scanline algorithm

On every scanline:
I Find intersections of scan

line with all edges of the
polygon

I Sort intersections in
increasing order of x
coordinate

I Fill in pixels between all pairs
of intersections

Works with concave polygons

Span extrema

Only turn on pixels that have their centre interior to the polygon

I Otherwise pixels overlap with adjacent polygons

This is done by rounding up values on left edges and down on right
edges

Scanline algorithm
Pros:

I Simple

Cons:

I Hard to parallelise e�ciently
I Special cases can occur and require exception handling

Barycentric coordinates for triangles

I Allow us to check whether a pixel is inside or outside a triangle
I Makes it easy to interpolate attributes between vertices
I Used in GPUs
I Easy to parallelise

Barycentric coordinates for triangles

Given a 2D triangle with vertices p0, p1, p2. For any point in the
plane p:

p = p0 + —(p1 ≠ p0) + “(p2 ≠ p0)

= (1 ≠ — ≠ “)p0 + —p1 + “p2
= –p0 + —p1 + “p2

– + — + “ = 1

P

P

P

0

1

2

(�, �, �)

�p0 + �p1 + �p2

Barycentric coordinates for triangles
The values –, —, “ œ [0, 1] if and only if p is inside the triangle.
–, —, “ are the barycentric coordinates of the point p.

P

P

P

0

1

2

b

c

b'
c'

a'

a

� =
�a�
�a�� , � =

�b�
�b�� , � =

�c�
�c��

Calculating barycentric coordinates

If the triangle is composed of p0 = (x0, y0), p1 = (x1, y1),
p2 = (x2, y2), then for a point (x , y):

– = f12(x ,y)
f12(x0,y0)

, — = f20(x ,y)
f20(x1,y1)

“ = f01(x ,y)
f01(x2,y2)

where f

ab

= (y
a

≠ y

b

)x + (x
b

≠ x

a

)y + x

a

y

b

≠ x

b

y

a

Bounding box of a triangle

We calculate a bounding box around the triangle, by taking the
minimum and maximum vertex coordinates in each direction:
x

min

, y

min

= min(x0, x1, x2), min(y0, y1, y2)

x

max

, y

max

= max(x0, x1, x2), max(y0, y1, y2)

Scanning inside the triangle

I For each pixel in the bounding box, compute the barycentric
coordinates

I Shade the pixel if all three values –, —, “ œ [0, 1]

Interpolation

Barycentric coordinates can be used to interpolate attributes of
triangle vertices, for example colour, depth, normal vectors or
texture coordinates.

Interpolation of colour

Gouraud shading:

I Calculate colour at vertices and interpolate the colour over the
surface

Interpolation of depth

I When triangles overlap each other, depth needs to be
calculated at each pixel in case the intersect

I Calculate using barycentric coordinates
I Used in Z-bu�ering

Exercise

I What are the barycentric
coordinates of A and B?

I What is the surface depth (Z
coordinate) at B

“ = (y0≠y1)x+(x1≠x0)y+x0y1≠x1y0
(y0≠y1)x2+(x1≠x0)y2+x0y1≠x1y0

— = (y0≠y2)x+(x2≠x0)y+x0y2≠x2y0
(y0≠y2)x2+(x2≠x0)y2+x0y2≠x2y0

Exercise

Barycentric coordinates
I

A = (1
2 , 5

8 , ≠1
8)

I
B = (1

3 , 1
3 , 1

3)

Depth at B = 5
3

Shape editing

We can apply the same barycentric coordinates within a triangle
when its shape is edited

General polygons

Barycentric coordinates for polygons with more vertices:

v =
q

i

w

i

p

iq
i

w

i

Barycentric coordinates for 3D meshes:

I Mean value coordinates
I Harmonic coordinates (generalised barycentric coordinates)

Shape editing

Mean value coordinates

Coordinates that can:

I smoothly interpolate boundary values
I works with concave polygons
I works in 3D

w

i

= tan –
i≠1/2+tan –

i

/2
Îv

i

≠v0Î

Figure 1. Star-shaped polygon.

main purpose of this paper is to address this latter problem. We derive coordinates which
depend (infinitely) smoothly on the data points v0, v1, . . . , vk through a simple algebraic
formula.

Several researchers have studied closely related problems [9,11,14,15]. In the special
case that the polygon v1, . . . , vk is convex, Wachspress [14] found a solution in which the
coordinates can be expressed in terms of rational polynomials,

�i =
wi�k

j=1 wj

, wi =
A(vi�1, vi, vi+1)

A(vi�1, vi, v0)A(vi, vi+1, v0)
=

cot �i�1 + cot �i

||vi � v0||2
, (1.3)

where A(a, b, c) is the signed area of triangle [a, b, c] and �i�1 and �i are the angles shown in
Figure 1. The latter formulation in terms of angles is due to Meyer, Lee, Barr, and Desbrun
[9]. Of course these coordinates depend smoothly on the data points v0, v1, . . . , vk and
are therefore suitable when the polygon is convex. However, for star-shaped polygons the
coordinate �i in (1.3) can be negative, and, in fact, will be so precisely when �i�1 +�i > �.

Another set of previously found weights can be expressed as

�i =
wi�k

j=1 wj

, wi = cot �i�1 + cot �i. (1.4)

These weights arise from the standard piecewise linear finite element approximation to
the Laplace equation and appear in several books on numerical analysis, e.g. [7], and
probably go back to the work of Courant. They have since been used in the computer
graphics literature [10], [1]. However, for our purposes these weights su�er from the
same problem as the last ones, namely that they might be negative. The weight �i is
negative if and only if �i�1 + �i > �.

Another possible set of coordinates might be Sibson’s natural neighbour coordinates
[11], if we treated the points v1, . . . , vk as a set of scattered data points. However, despite
various other good properties, Sibson’s coordinates, like those of [2], su�er from being
defined piecewise, and have in general only C1 dependence on the point v0. Moreover,
several of Sibson’s coordinates might be zero, since the only non-zero ones would correspond
to Voronoi neighbours of v0.

2

Mean value coordinates

I Can interpolate convex and concave polygons
I Smoothly interpolates the interior as well as the exterior

Mean value coordinates

I Can interpolate convex and concave polygons
I Smoothly interpolates the interior as well as the exterior

Mean value coordinates

I Can be computed in 3D
I Applicable for mesh editing

Overview

I Line rasterisation
I Polygon rasterisation
I Mean value coordinates
I

Decomposing polygons

Polygon decomposition

For polygons with more than three vertices, we usually decompose
them into triangles

Simple for convex

Concave is difficult

Polygon decomposition

Algorithm:

I Find leftmost vertex and label it A
I Compose potential triangle out of A and adjacent vertices B

and C
I Check to see if another point of the polygon is inside the

triangle ABC
I If all other points are outside ABC, remove ABC from the

polygon and proceed with next leftmost vertex

Polygon decomposition
I Left most vertex is A
I Form a triangle between A and the adjacent B and C
I Check if all other vertices are outside this triangle

A

B

C
D

Vertex D fails test

Polygon decomposition
If a vertex is inside, split the polygon by the inside vertex and point
A and continue:

A

B

C

D

Test ABD as before

Polygon decomposition

The new edge may split the polygon in two. If so recurse over each
polygon:

A

B C

D

Split into ABCDE and AEFGH

E F

GH

Summary

Rasterisation:

I Line rasterisation, midpoint algorithm
I Triangle rasterisation, scanline algorithm, barycentric

coordinates
I Mean value coordinates
I Polygon decomposistion into triangles

References
Midpoint and scanline algorithm:

I Foley Chapter 3.2, 3.5, 3.6

Barycentric coordinates:

I Shirley Chapter 2.7

Mean value coordinates:

I Floater, M. S. Mean value coordinates. Computer Aided
Geometric Design, 20(1), 19–27, 2003

I Ju, T., Schaefer, S., & Warren, J. Mean value coordinates for
closed triangular meshes. ACM Transactions on Graphics,
24(3), 561–566, 2005.

Polygon decomposition:

I http://www.siggraph.org/education/materials/
HyperGraph/scanline/outprims/polygon1.htm

