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Graphics pipeline
Geometry
» Transformation

» Perspective projection
» Hidden surface removal

Shading and lighting

» Reflections
» Shadows

Rasterisation

» Anti aliasing

» Texture mapping
» Bump mapping

» Ambient occlusion



Mesh structures
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Objects represented as a set of polygons



Mesh topology
Manifolds:

» All edges belong to two triangles

» All vertices have a single continuous set of triangles around
them




Orientation

Vertexes in triangle list stored in counter clockwise order



Directed edge data structure

Vertices

X1 Y1 21 e next
X2 Vo Zo €

Edges

€neighbour  €next  €prev




Surface normals

Calculation:

n = (t—r)x(s—r)




3D translation

Very simple to extend 2D case to 3D:

/X’\ /1 0 0 dx\ /X\
vyl 10 1 0 d, y
Zl |0 0 1 d, z
\1/ \0 0 0 1/ \1



3D scaling

Very simple to extend 2D case to 3D:

/ x! \ / se 0 O O\ / X\
y| 10 s 0 O y
zZ'l 0 s, z

0 0
\1/ \0 0 0 1) \1




3D rotation - X axis

[,

(xX\ (1 0 0  0)
y 0 cosf@ —sinf O
Z 0 sinf cosé

0
\1/ \0 O 0 1)




3D rotation - Y axis
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3D rotation - Z axis

/x’\ /cosé’ —sinf
y sind cosf
zZ'l 0 0

\ 1/ \ 0 0

o = O O

o O




Example 2

Rotate then Tra Nnslate

otate 1 ': deg

(1) [

(0.0) (0.0)

Tra NnNslate then Rotate

“ N ) [ransiate(3,0) Rotate 45 deg (3/sqrt(2),3/sq rt(Z))
(0,0) (0,0) iJ!”




Order of multiplication




Perspective projection - simple case

From similar triangles :

X p X y p y

P(x.,y,z)

Pp(Xp:Ypr-d)
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Transtorming the view frustum

The frustum is defined by a set of parameters, I, r, b, t, n, f:

| Left x coordinate of near plane

r Right x coordinate of near plane

b Bottom y coordinate of near plane
t Top y coordinate of near plane

n Minus z coordinate of near plane
f Minus z coordinate of far plane

With 0 < n< f.
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Projection summary

» Parallel and perspective projection

» Projection matrices transform points to 2D coordinates on the
screen

» Canonical view volumes can be used for clipping

Cainiml sl vl il me




Clipping

They may intersect the canonical view volume, then we need to
perform clipping:

> Clipping lines (Cohen-Sutherland algorithm)
» Clipping polygons (Sutherland-Hodgman algorithm)

l;lip\l-rclnnqlt

///f . »



Combined lighting models

Combining ambient, diffuse and specular highlights gives the
Phong lllumination model

| = Ilky+ Ip(kgcos + ks cos” a)

.—I—.—I—..

Ambient Diffuse Specular



Phong example

Flat Gouraud Phong



Texture mapping

e Barycentric coordinates

e UV mappings

ut=out+tPuwtyuw
v=avitpBv.t+7yv;




Environment Mapping

- Simple yet powerful method to generate reflections

- Simulate reflections by using the reflection vector to index
a texture map at "infinity".

View Point

Environment map
on a sphere

The original environment map was
a sphere [by Jim Blinn '76]



Indexing the sphere map

Assume that v is fixed at
(0,0,1)

An un-normalised normal vector
n is then:

n=1r-—+uv

— (rfcaryyrz + 1)
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Indexing Cubic Maps

* How do you decide which texture coordinates to use?
* Divide by the coordinate with the largest magnitude
* Now have a value in the range [-1,1]

 Remapped to a value between 0 and 1.
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Flat Mirrors

Mirror

}

x' = RM)™T(-p) x
x"=5(1,1,-1) x'
X' = T(p)R(n) X!

x""=T(m)RM)S(1,1,—1)RM)"T(-p) x

Mmirrror = T(p)R(n)S(1,1, _l)R(n)_lT(_p)



Stencil buffer mirrors

e First pass:

e Render the scene without the mirror
e For each mirror:

e Second pass:

e Clear the stencil, disable the write to the colour buffer,
render the mirror, setting the stencil to 1 if the depth test
passes

e Third pass: Stencil buffer after the second pass

e Clear the depth buffer with the stencil active, passing things
inside the mirror only

e Reflect the world and draw using the stencil test. Only things
seen in the mirror will be drawn

e Combine it with the scene made during the first pass

Render the mirrored scene
into the stencil



Shadows

e Planar:
/
v = MM, v
T ‘ T
shadow shadow point in
vertex matrix local

coordinates
e Shadow texture:




Shadows

Shedowing Object
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Figure 32. Shadow Volume
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Antialiasing

P \/\vﬁ\/\Oﬁ \/\7 Fetgnat = 08 ot

fsz'gnal — O°5fsample

fsignal < O-5fsample




Subsampling schemes

1 sample ®

] x2 sample

2x1sample |e e

Quincunx O

2 x 2 grid

@
2 x 2 RGSS EI .!.j
Lle)




Antialiasing textures

pixel space texture space

pixel's

pixel corner’s >
translation

Figure 5.13. On the left is a square pixel cell and its view of a texture. On the right is
the projection of the pixel cell onto the texture itself.



Bump mapping

S,

F
smooth sarface -4 wrinkle Fu

-.:.:5 g n’

wrinkled surface

Sphere w/Diffuse Texture Swirly Bump Map Sphere w/Diffuse Texture & Bump Map



/-buffer

e Advantages:

e Simple to implement in hardware

e Memory is relatively cheap

e Works with any primitives

e Unlimited complexity

e No need to sort objects or calculate intersections
e Disadvantages:

e Wasted time drawing hidden objects

e Z-precision errors (aliasing)



Hidden surface removal




Transparency

Co =aCs+ (1 —a)Cy

New pixel colour

$
[

C's = Transparent object colour

C'y = Current pixel colour




Ray tracing

(Viewer direction)




Ray/sphere intersection

This gives us the solution for t as:

—2d - (e—s)+ \/(Qd-(e—s))2—4(d-d)((e—s)-(e—s)—r2)

- 2(d - d)

With the number of solutions determined by the value in the
square root.

» If b°> — 4ac > 0 there are two intersections of the ray with the
sphere

» If b> — 4ac = 0 the ray grazes the sphere and there is a single
Intersection

» If b> — 4ac < 0 the ray misses the sphere completely.



Ray/plane intersections

To calculate the intersection of a ray with a plane we substitute the
equation for the points on the ray into the implicit plane equation:

(e+td—s)- n=0
(e—s)-n+td-n=20

(s—e)-n

f —
d n

In the case where d - n = 0 the ray is parallel to the plane, and so
does not intersect it.



Ray/triangle intersection

First perform intersection with the plane:

:(s—e)-n

t
d n

Then test if the point r(t) = e + td lies within the triangle.



Projection onto primary planes

To make things simpler, we project the triangle onto one of the
planes corresponding to a pair of axes (xy, yz or xz).

» We chose the plane on
which the triangle has the
largest projection, using the
normal vector n.

» The largest component of n
is dropped e.g. if |n,| is the
largest we project onto the
xz plane, dropping the y
coordinate.

N



Projection onto primary planes
After projection to a 2D plane we can test for a point being inside
the triangle using barycentric coordinates:

R
fP1P2(X7y) |
o —
fp, P, (X0, Y0)
6: szPO(X7.y)
fp,py (X1, Y1)
_ fPopl(Xay)
oors (32, 72) L sl el
" r S t
X — 762 TR — /
P, [0 T 0
where

fPQ(Xa)/) — ()/q — yP)X — (Xq — Xp)y + Xq¥p — YgXp




Bounding volume hierarchy

e Give each object a bounding volume

e The bounding volume does not partition

e The bounding volumes can overlap each other

e The volume higher in the hierarchy contains their children

e If a ray misses a bounding volume, no need to check for intersection with children

o If we intersect a bounding volume, check intersection with children




Light transport notations

L __ Light

specular object

o L light source S

Camera

e E the eye 127 E
LSDE
e S specular reflection or refraction

e D diffuse reflection

LDDE LSDE



The Radiosity model

Bj o /)jHj -+ Ej

Bj 1s the radiosity of surtace j,

pj 1s the reflectivity of surface j,

E; 1s the enereyv emitted by surface j.
b 5. .

H; is the energy incident on surface ]

E»3

COS @, COS .

L dd,dA,

7

Bj — Ej -+ P Z BiFi,j

1—=1



Radiosity
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Path Tracing

Screen

Camera

ffuse surface
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Photon Mapping

oA two pass global illumination algorithm

- First Pass - photon tracing:

e Casting photons from the light source

e Storing photon positions in the “photon

map |
-Second Pass — rendering (radiance estimate):
e the shading of pixels is estimated from the

photon map




Second Pass — Rendering

s e L
f AV
' P Rk Sl
ok
0

- kR

e The radiance estimate can be
written by the following
equation

— N — - AD x,;
L(x,0)=> f(x0,0)—= (. 0,)
p=l Ad
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Hermite curves Vp /

Pi

Hermite Specification
r(t) =(2x¢ + xf — 221 + 2))t° + (=339 — 22} + 321 — Tt

/
+ Tyt + g ! Hermite Blending
09 Functions
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2 1 -2 17x,
067

051

X(,):[{3 2 l] -3 -2 3 -1fx,
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0 0| x ol
0

0.21

01t

03 04 05 08 07 08 09

-0.21
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Bézier Curves

-1 3 -3 1]}¢qg,
: 3-6 3 0
x=l¢ £ ¢ 1 e
-3 3 0 0fq
1 0 0 0fgq

X(t)= (=t +3t2 =3t + 1)go + (3t> = 612 + 3t)q1 + (=3t + 3t?)q2 + (t*)q3

¢ N Bezier Blending
"support" ol Functions
071
(=0 "chord" P4 o6l
l =

1

pl 051
Bezier
Specification °F N

-01 01 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

-0.21



Continuity between curve segments

d" X (t)
dt
the join point, the curve is called C"continuous

o continuit/y-.
T )

o If the direction and magnitude of are equal at

C? & C! continuity



Uniform cubic B-splines

X(H=t"MQ’
QV=(x_.....x

where

for t =t=ft,,
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Catmull-Rom Spline

Vp;

t=1
t=0 P2

Pi ®

Hermite Specification

Pi(f):T'.AICR'GB
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Bicubic patches

e Now we assume @; to vary along a parameter s,
o Qi(sv t) — tTM[QI (8)7 QZ(S)a QS(S)v Q4(S)]

o Qz(S) are themselves cubic curves

e Bicubic patch has degree 6

X(s.t)=t".M,.q..M,.s

q. is 4x4 array of x coords
v(s.t)=t".Myq, Mg.s

q, is 4x4 array of 'y coords
z(s.t)=t" My.q. M}.s

q. is 4x4 array of z coords




Tessellation




de Casteljau’'s algorithm

e Given the control points P;, ..., P, and the parameter value
0<t<1

e Repeat the following procedure:
PI() = (1— )P~} (t) + P (8
P)(t) = P;
e Then P;'(t) is the point with parameter value t on the

Bézier curve




B-Splines: general form

a B-spline of order k (polynomial of degree k-1) is a parametric
curve composed of a linear combination of basis B-splines B; .

P;(1=0,...,m) are the control points N
( ) oS (1) = 3 PB, (1)
i=0

Knots: [y =!I =...=[_ . - the knots subdivide the domain

of the B-spline curve into a set of knot spans [t;, ;1)
The B-splines can be defined by
1,t. <t<t. ,

()= 0, otherwise

t‘@ Q+
B, (1) + — B (¢)

ivk-1 Y itk-1 %

Bi,k (t) = ;



B-spline terms

. Orderk . the number of control points affecting the sampled value
o Degree k — ] : the degree of the basis function polynomial

« Control points PZ — (O7 o 7m)

« Knots £ (§=0,...,n)

e An important rule: TV — 11l = k

e The domain of the curve is tk—l S t S tm—l—l

° BG'OW, k:4, m=9, domain IS t3 S t S th

3 m+1

le— |




de Boor's algorithm

e B-spline version of de Casteljau’s algorithm
e A precise method to evaluate the curve

e Starting from control points and parameter value t,
recursively solve:

a_ —
1.V

i+k—1-r i

y




Knot insertion

- If the new knot t is inserted into the span [t, tj+1),
the new control points can be computed by

Q, =(-a)P_ +aP,
where Qi is the new control point and ai is computed by

[—1
a, = — for j-k+2=<i<

l

Livier — 1
Pj-k+1, Pj-k+2, ..., PJ-1, Pjis replaced with Pj-k+1, Qj-k+2, ...,
Q-1, Qj ,PJ.

ti t ti+k-1

ail 1-a1



Subdivision Surfaces
- ‘,

edge point

new vertex
face point




What next?

e Practical low level implementation details: Real Time Rendering
book http://www.realtimerendering.com

e Building demos - ideas:

Pixel shaders (https://open.gl/)

e Spherical harmonic lighting (http://www.cs.columbia.edu/~cs4162/slides/

spherical-harmonic-lighting.pdf)

e Real-time radiosity (progressive refinement)

e Photon mapping (http://graphics.ucsd.edu/"henrik/)

e Real-time ray casting/tracing


http://www.realtimerendering.com
https://open.gl/
http://www.cs.columbia.edu/~cs4162/slides/spherical-harmonic-lighting.pdf
http://graphics.ucsd.edu/~henrik/

