
Computer Graphics 18 - Review

Tom Thorne

Slides courtesy of Taku Komura

www.inf.ed.ac.uk/teaching/courses/cg

Graphics pipeline
Geometry

I Transformation
I Perspective projection
I Hidden surface removal

Shading and lighting

I Reflections
I Shadows

Rasterisation

I Anti aliasing
I Texture mapping
I Bump mapping
I Ambient occlusion

Mesh structures

Objects represented as a set of polygons

Mesh topology
Manifolds:

I All edges belong to two triangles
I All vertices have a single continuous set of triangles around

them

Orientation

Vertexes in triangle list stored in counter clockwise order

Directed edge data structure

Vertices
x1 y1 z1 e

r

x2 y2 z2 e

s

...
...

...
...

Edges
v

a

v

b

e

neighbour

e

next

e

prev

...
...

...
...

...

next

prev

neighbour

Surface normals
Calculation:

n = (t ≠ r) ◊ (s ≠ r)

r

st
n

u=s-r

v=t-r

u×v

3D translation

Very simple to extend 2D case to 3D:

Q

ccca

x

Õ

y

Õ

z

Õ

1

R

dddb =

Q

ccca

1 0 0 d

x

0 1 0 d

y

0 0 1 d

z

0 0 0 1

R

dddb

Q

ccca

x

y

z

1

R

dddb

3D scaling

Very simple to extend 2D case to 3D:

Q

ccca

x

Õ

y

Õ

z

Õ

1

R

dddb =

Q

ccca

s

x

0 0 0
0 s

y

0 0
0 0 s

z

0
0 0 0 1

R

dddb

Q

ccca

x

y

z

1

R

dddb

3D rotation - X axis

Q

ccca

x

Õ

y

Õ

z

Õ

1

R

dddb =

Q

ccca

1 0 0 0
0 cos ◊ ≠ sin ◊ 0
0 sin ◊ cos ◊ 0
0 0 0 1

R

dddb

Q

ccca

x

y

z

1

R

dddb

3D rotation - Y axis

Q

ccca

x

Õ

y

Õ

z

Õ

1

R

dddb =

Q

ccca

cos ◊ 0 sin ◊ 0
0 1 0 0

≠ sin ◊ 0 cos ◊ 0
0 0 0 1

R

dddb

Q

ccca

x

y

z

1

R

dddb

3D rotation - Z axis

Q

ccca

x

Õ

y

Õ

z

Õ

1

R

dddb =

Q

ccca

cos ◊ ≠ sin ◊ 0 0
sin ◊ cos ◊ 0 0

0 0 1 0
0 0 0 1

R

dddb

Q

ccca

x

y

z

1

R

dddb

Example 2

Order of multiplication

Perspective projection - simple case

Transforming the view frustum
The frustum is defined by a set of parameters, l , r , b, t, n, f :

l Left x coordinate of near plane
r Right x coordinate of near plane
b Bottom y coordinate of near plane
t Top y coordinate of near plane
n Minus z coordinate of near plane
f Minus z coordinate of far plane

With 0 < n < f .

Projection summary

I Parallel and perspective projection
I Projection matrices transform points to 2D coordinates on the

screen
I Canonical view volumes can be used for clipping

Clipping

They may intersect the canonical view volume, then we need to
perform clipping:

I Clipping lines (Cohen-Sutherland algorithm)
I Clipping polygons (Sutherland-Hodgman algorithm)

Combined lighting models

Combining ambient, di�use and specular highlights gives the
Phong Illumination model

I = Iaka + Ip(kd cos ◊ + ks cosn –)

+ + =
Ambient Di�use Specular I

Phong example

Texture mapping

• Barycentric coordinates

• uv mappings

u= α u1 + β u2 + γ u3

v = α v1 + β v2 + γ v3

Environment Mapping

● Simple yet powerful method to generate reflections

● Simulate reflections by using the reflection vector to index
a texture map at "infinity".

The original environment map was
a sphere [by Jim Blinn ’76]

Indexing the sphere map
• Assume that v is fixed at

(0,0,1)

• An un-normalised normal vector
n is then:

v

r n

v
nr

n = r + v

= (r
x

, r
y

, r
z

+ 1)

n = (
r
x

m
,
r
y

m
,
r
z

+ 1

m
)

m =
q
r2
x

+ r2
y

+ (r
z

+ 1)2

Indexing Cubic Maps

• How do you decide which texture coordinates to use?

• Divide by the coordinate with the largest magnitude

• Now have a value in the range [-1,1]

• Remapped to a value between 0 and 1.

v

d

yx

y

x

=
v

d

Flat Mirrors

Stencil buffer mirrors

• First pass:

• Render the scene without the mirror

• For each mirror:

• Second pass:

• Clear the stencil, disable the write to the colour buffer,
render the mirror, setting the stencil to 1 if the depth test
passes

• Third pass:

• Clear the depth buffer with the stencil active, passing things
inside the mirror only

• Reflect the world and draw using the stencil test. Only things
seen in the mirror will be drawn

• Combine it with the scene made during the first pass

Stencil buffer after the second pass

Render the mirrored scene
 into the stencil

Shadows
• Planar:

point in
local

coordinates

shadow
vertex

shadow
matrix

v0 = MsMg lv

• Shadow texture:

Shadows

Antialiasing

fsignal = 0.8fsample

fsignal = 0.5fsample

fsignal < 0.5fsample

Subsampling schemes

Antialiasing textures

Bump mapping

Sphere w/Diffuse Texture Swirly Bump Map Sphere w/Diffuse Texture & Bump Map

surface. Attempts to do this were not verysucessful. The images usually looked like smooth
surfaces with photographs of wrinkles glued on.The main reason for this is that the light sourcedirection when making the texture photograph was
rarely the same as that used when synthesizing theimage. In fact, if the surface (and thus the
mapped texture pattern) is curved, the angle of
the light source vector with the surface is noteven the same at different locations on the patch.
2. NORMAL VECTOR PERTURBATION

To best generate images of macroscopic
surface wrinkles and irregularities we mustactually model them as such. Modelling eachsurface wrinkle as a separate patch would probablybe prohibitively expensive. We are saved fromthis fate by the realization that the effect ofwrinkles on the perceived intensity is primarilydue to their effect on the direction of thesurface normal (and thus the light reflected)
rather than their effect on the position of the
surface. We can expect, therefore, to get a goodeffect from having a texturing function which
performs a small perturbation on the direction ofthe surface normal before using it in theintensity formula. This is similar to thetechnique used by Batson et al. [1] to synthesize
aerial picutres of mountain ranges fromtopographic data.

The normal vector perturbation is defined in
terms of a function which gives the displacement
of the irregular surface from the ideal smooth
one. We will call this function F(u,v). On thewrinkled patch the position of a point is
displaced in the direction of the surface normal
by an amount equal to the value of F(u,v). The
new position vector can then be written as:

P' = P + F N/INI
This is shown in cross section in figure 2.

The partial derivatives involved are evaluated bythe chain rule. So

Pu' = d/du P' = d/du(P + F N/INI)
= Pu + Fu N/INI + F (N/INI)u

Pv' = d/dv P' = d/dv(P + F N/INI)
= Pv + Fv N/INI + F (N/INI)v

The formulation of the normal to the wrinkled
surface is now in terms of the original surfacedefinition functions, their derivatives, and thebump function, F, and its derivatives. It is,however, rather complicated. We can simplify
matters considerably by invoking the approximation
that the value of F is negligably small. This isreasonable for the types of surface irregularities
for which this process is intended where the
height of the wrinkles in a surface is small
compared to the extent of the surface. With thissimplification we have

Pu' Pu + Fu N/INI

Pv' Pv + Fv N/INI

The new normal is then

N' = (Pu + Fu N/NI) x (Pv + Fv N/NI)
= (Pu x Pv) + Fu (N x Pv)/INI

+ Fv (Pu x N)/INI + Fu Fv (NxN)/lNI
The first term of this is, by definition, N. The
last term is identically zero. The net expression
for the perturbed normal vector is then

N' =N +

where D = (Fu (N x Pv) - Fv (N x Pu)) / INI

This can be interpreted geometrically by observingthat (N x Pv) and (N x Pu) are two vectors in the
tangent plane to the surface. An amount of each
of them proportional to the u and v derivatives ofF are added to the original, unperturbed normal
vector. See figure 3

Another geometric interpretation is that thevector N' comes from rotating the original vectorN about some axis in the tangent plane to thesurface. This axis vector can be found as thecross product of N and N'.

287

Z-buffer

• Advantages:

• Simple to implement in hardware

• Memory is relatively cheap

• Works with any primitives

• Unlimited complexity

• No need to sort objects or calculate intersections

• Disadvantages:

• Wasted time drawing hidden objects

• Z-precision errors (aliasing)

Hidden surface removal

3

3
41

2

5

back

2
1

front

5
4 back

back

A

BC

D

E

F

G

A

B

DC E

Transparency

C
o

= ↵C
s

+ (1� ↵)C
d

C
o

= New pixel colour

C
s

= Transparent object colour

C
d

= Current pixel colour

Ray tracing

*

θ θ

α

Ray/sphere intersection

This gives us the solution for t as:

t =
≠2d · (e ≠ s) ±

Ò
(2d · (e ≠ s))2 ≠ 4(d · d)((e ≠ s) · (e ≠ s) ≠ r

2)

2(d · d)

With the number of solutions determined by the value in the

square root.

I
If b

2 ≠ 4ac > 0 there are two intersections of the ray with the

sphere

I
If b

2 ≠ 4ac = 0 the ray grazes the sphere and there is a single

intersection

I
If b

2 ≠ 4ac < 0 the ray misses the sphere completely.

Ray/plane intersections

To calculate the intersection of a ray with a plane we substitute the

equation for the points on the ray into the implicit plane equation:

(e + td ≠ s) · n = 0

(e ≠ s) · n + td · n = 0

t =
(s ≠ e) · n

d · n

In the case where d · n = 0 the ray is parallel to the plane, and so

does not intersect it.

Ray/triangle intersection

First perform intersection with the plane:

t =
(s ≠ e) · n

d · n

Then test if the point r(t) = e + td lies within the triangle.

Projection onto primary planes

To make things simpler, we project the triangle onto one of the

planes corresponding to a pair of axes (xy , yz or xz).

I
We chose the plane on

which the triangle has the

largest projection, using the

normal vector n.

I
The largest component of n
is dropped e.g. if |n

y

| is the

largest we project onto the

xz plane, dropping the y

coordinate.

Projection onto primary planes
After projection to a 2D plane we can test for a point being inside

the triangle using barycentric coordinates:

– =
f

P1P2(x , y)

f

P1P2(x0, y0)

— =
f

P2P0(x , y)

f

P2P0(x1, y1)

“ =
f

P0P1(x , y)

f

P0P1(x2, y2)
,

P

P

P

0

1

2

s
t

s'
t'

r'

r

� =
�r�
�r�� , � =

�s�
�s�� , � =

�t�
�t��

where

f

pq

(x , y) = (y
q

≠ y

p

)x ≠ (x
q

≠ x

p

)y + x

q

y

p

≠ y

q

x

p

Bounding volume hierarchy

• Give each object a bounding volume

• The bounding volume does not partition

• The bounding volumes can overlap each other

• The volume higher in the hierarchy contains their children

• If a ray misses a bounding volume, no need to check for intersection with children

• If we intersect a bounding volume, check intersection with children

*

Light transport notations

• L light source

• E the eye

• S specular reflection or refraction

• D diffuse reflection

LDDE LSDE

The Radiosity model

Bj

Radiosity

4

Slide 13Lecture 20 6.837 Fall ‘01

Progressive Refinement

! The idea of progressive refinement is to provide a quickly rendered image to
the user that is then gracefully refined toward a more accurate solution. The
radiosity method is especially amenable to this approach.

! The two major practical problems of the radiosity method are the storage costs
and the calculation of the form factors.

! The requirements of progressive refinement and the elimination of
precalculation and storage of the form factors are met by a restructuring of the
radiosity algorithm.

! The key idea is that the entire image is updated at every iteration, rather than a
single patch.

Slide 14Lecture 20 6.837 Fall ‘01

Reordering the Solution for PR

Shooting: the radiosity of all patches is updated for each iteration:

1 1 1 1

2 2 2 2

i

i

i

n n n ni

B B F
B B F

B

B B F

ρ
ρ

ρ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

!

" "

"

!

!

!

" "

!

!

This method is fundamentally a Southwell relaxation

Slide 15Lecture 20 6.837 Fall ‘01

Progressive Refinement Pseudocode

}
i;element ofintensity the as B using imagedisplay

0B
}

rad;BB
 rad;BB
;B rad

{ element)(every for
;largest is Bthat such i, pick

{ converged)(not while

i

i

jj

jj

i

i

=∆

∆+=
∆+∆=∆
ρ∗∆=∆

∗∆

jij

i

F

A

Slide 16Lecture 20 6.837 Fall ‘01

Progressive Refinement w/out Ambient Term

Path Tracing

*

Photon Mapping

•A two pass global illumination algorithm
– First Pass - photon tracing:

• Casting photons from the light source
• Storing photon positions in the “photon

map”,
–Second Pass – rendering (radiance estimate):

• the shading of pixels is estimated from the
photon map

Second Pass – Rendering

Hermite curves

x(t) =(2x0 + x

0
0 � 2x1 + x

0
1)t

3 + (�3x0 � 2x0
0 + 3x1 � x

0
1)t

2

+ x

0
0t+ x0

Bézier Curves

Continuity between curve segments

• If the direction and magnitude of are equal at
the join point, the curve is called continuous

dnX(t)

dtn

Cn

Uniform cubic B-splines

Some Terms
• Order k: the number of control points that affect the sampled

value
• Degree k-1 (the basis functions are polynomials of degree k-1)
• Control points Pi (i=0,…,m)
• Knots : tj, (j=0,…, n)
• An important rule : n – m = k
• The domain of function tk-1 ≦ t ≦tm+1

– Below, k = 4, m = 9, domain, t3 ≦ t ≦t10

3
t

m+1
0

Catmull-Rom Spline

Bicubic patches

• Now we assume to vary along a parameter s,
•
• are themselves cubic curves
• Bicubic patch has degree 6

Qi(s, t) = tTM [q1(s), q2(s), q3(s), q4(s)]
qi

qi(s)

Tessellation

de Casteljau’s algorithm

• Given the control points and the parameter value

• Repeat the following procedure:

• Then is the point with parameter value on the
Bézier curve

de Casteljau’s Algorithm

• P1, . . . , Pn
0  t  1

P r
i (t) = (1� t)P r�1

i (t) + tP r�1
i+1 (t)

P 0
i (t) = Pi

Pn
0 (t) t

a B-spline of order k (polynomial of degree k-1) is a parametric
curve composed of a linear combination of basis B-splines :

 are the control points

Knots: - the knots subdivide the domain
of the B-spline curve into a set of knot spans

The B-splines can be defined by

B-Splines: general form

∑
=

=
m

i
kii tBPtp

0
,)()(

)()()(

otherwise 0,
tt t1,

)(

1,1
1

1,
1

,

1ii
1,

tB
tt
tttB

tt
tttB

tB

ki
iki

ki
ki

iki

i
ki

i

−+
−+

+
−

−+

+

−

−
+

−

−
=

"
#
$ <≤

=

mkttt +≤≤≤ ...10

Bi,k

Pi (i = 0, . . . ,m)

[ti, ti+1)

B-spline terms

• Order : the number of control points affecting the sampled value

• Degree : the degree of the basis function polynomial

• Control points

• Knots

• An important rule:

• The domain of the curve is

• Below, k=4, m=9, domain is

Some Terms
• Order k: the number of control points that affect the sampled

value
• Degree k-1 (the basis functions are polynomials of degree k-1)
• Control points Pi (i=0,…,m)
• Knots : tj, (j=0,…, n)
• An important rule : n – m = k
• The domain of function tk-1 ≦ t ≦tm+1

– Below, k = 4, m = 9, domain, t3 ≦ t ≦t10

3
t

m+1
0

tj (j = 0, . . . , n)

Pi i = (0, . . . ,m)

n�m = k

k

k � 1

tk�1  t  tm+1

t3  t  t10

de Boor’s algorithm

• B-spline version of de Casteljau’s algorithm

• A precise method to evaluate the curve

• Starting from control points and parameter value t,
recursively solve:

De Boor’s Algorithm

•

Knot insertion

• If the new knot t is inserted into the span [tj, tj+1),
the new control points can be computed by

where Qi is the new control point and ai is computed by

Pj-k+1, Pj-k+2, ..., Pj-1, Pj is replaced with Pj-k+1, Qj-k+2, ...,
Qj-1, Qj ,Pj.

i1ii PPQ ii aa +−= −)1(

jij-k
tt
tta

iki

i
i ≤≤+

−

−
=

−+

2for
1

Subdivision Surfaces

What next?

• Practical low level implementation details: Real Time Rendering
book http://www.realtimerendering.com

• Building demos - ideas:

• Pixel shaders (https://open.gl/)

• Spherical harmonic lighting (http://www.cs.columbia.edu/~cs4162/slides/
spherical-harmonic-lighting.pdf)

• Real-time radiosity (progressive refinement)

• Photon mapping (http://graphics.ucsd.edu/~henrik/)

• Real-time ray casting/tracing

http://www.realtimerendering.com
https://open.gl/
http://www.cs.columbia.edu/~cs4162/slides/spherical-harmonic-lighting.pdf
http://graphics.ucsd.edu/~henrik/

