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Overview

e More on Bézier and B-splines
e de Casteljau’s algorithm
e General form of B-splines
e de Boor's algorithm
e Knot insertion

« NURBS

e Subdivision surfaces



de Casteljau’s algorithm

o A method to evaluate (sample points in) or draw a Bézier
curve

e Works with Bézier curves of any degree

e A precise method to evaluate the curve




de Casteljau’'s algorithm

e Given the control points P;, ..., P, and the parameter value
0<t<1

e Repeat the following procedure:
PI() = (1— )P~} (t) + P (8
P)(t) = P;
e Then P;'(t) is the point with parameter value t on the

Bézier curve




Why does this work?

e In the quadratic Bézier curve case with 3 control points, Fy, P, o

Pi(t)=(1—-t)Py+tP
Pl(t)=(1—-t)P, +tP
Pi(t)= (1 —t)Py +tP}

e By inserting the first two equations into the third we obtain

P(t) = (1 —t)*Py+2t(1 —t)P, + t* Py

e Doing this for 4 control points will give the cubic formula we saw
last week



Why do we need this?

o The explicit representation can result in some instability
e Control points are randomly changed by 0.001

e The curve from de Casteljau’s algorithm stays almost the
same

e The curve from the polynomial basis form can deviate from
the original curve if the degree is high



Connecting Bézier patches

e The same thing applies to patches

e The degree of the surface can easily
become high since it is the
multiplication of two curves, e.g.
Bicubic is of degree 6

e The error of 16 control points is
accumulated




Overview

e More on Bézier and B-splines
o de Casteljau’'s algorithm
e General form of B-splines
e de Boor's algorithm
e Knot insertion

« NURBS

e Subdivision surfaces



B-Splines: general form

a B-spline of order k (polynomial of degree k-1) is a parametric
curve composed of a linear combination of basis B-splines B; .

P;(1=0,...,m) are the control points N
( ) oS (1) = 3 PB, (1)
i=0

Knots: [y =!I =...=[_ . - the knots subdivide the domain

of the B-spline curve into a set of knot spans [t;, ;1)
The B-splines can be defined by
1,t. <t<t. ,

()= 0, otherwise
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Producing curves using B-splines

e The basis functions are multiplied by the control points to
define arbitrary curves
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Knots

e The knots produce a vector that defines the domain of the
curve

e The knots must be in increasing order
e Not necessarily uniform spacing

o If uniformly sampled and degree is 3 we have a uniform cubic
B-spline




Knots

e Non-uniform knots:




B-spline terms

. Orderk . the number of control points affecting the sampled value
o Degree k — ] : the degree of the basis function polynomial

« Control points PZ — (O7 o 7m)

« Knots £ (§=0,...,n)

e An important rule: TV — 11l = k

e The domain of the curve is tk—l S t S tm—l—l

° BG'OW, k:4, m=9, domain IS t3 S t S th

3 m+1

le— |




Clamped B-splines

e The first and last knot values are repeated with multiplicity
equal to the order (degree + 1)

e The end points pass the control point

e For cubic bsplines, the multiplicity of the first / last knots
must be 4 (repeated four times)




Controlling the shape of B-splines

e Moving the control points is the most obvious way to control
bspline curves

o Changing the position of control point Pi only affects the
interval [ti, ti+k), where k is the order of a B-spline curve

- Editing the shape through the knot vector is not

very intuitive




Overview

e More on Bézier and B-splines
o de Casteljau’'s algorithm
e General form of B-splines

e de Boor's algorithm

e Knot insertion
e NURBS

e Subdivision surfaces



de Boor's algorithm

e B-spline version of de Casteljau’s algorithm
e A precise method to evaluate the curve

e Starting from control points and parameter value t,
recursively solve:
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Example

e Assume we have a cubic B-spline with knot vector:

0,0,0,0,0.25,0.5,0.75,1,1,1, 1]
e Computing the point at t = 0.4

e Then t4 <t < T5 and the control points that affect the final
position are Py, P35, Py, P;




Example
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What if you want to edit some details?

e You might want to add some high resolution details in a
particular area whilst leaving the rest of the curve unchanged



Knot insertion

e We can do this by knot Insertion

e New knots can be added without changing the shape of the

curve

e Because of the basic rule n-m = k (n+1: number of knots, m
+1: the number control points, k: order) the number of
control points will also increase




Knot insertion

e For a curve of degree f we remove f-1 points and add f points

e i.e. for a cubic B-spline, remove 2 points and add 3 points




Knot insertion

- If the new knot t is inserted into the span [t, tj+1),
the new control points can be computed by

Q, =(-a)P_ +aP,
where Qi is the new control point and ai is computed by

[—1
a, = — for j-k+2=<i<

l

Livier — 1
Pj-k+1, Pj-k+2, ..., PJ-1, Pjis replaced with Pj-k+1, Qj-k+2, ...,
Q-1, Qj ,PJ.
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Example

- A bspline curve of
degree 3 (k=4) having
the following knots

« t=0.5 inserted




Example
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Example
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Summary of B-splines

e Knot vector defines the domain
e Evaluation by de Boor's algorithm
e Controlling the shape by the control points

e Clamping the points by increasing the multiplicity of the
knots at the end points

e Increase the resolution by knot insertion
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NURBS (Non-uniform rational B-spline)

- Standard curves/surface representation in computer aided
design .
E B, (H)w.P,

C(t) =+

2 B, (Hw,
=0

P;: control points
B; 1: Bspline basis of order k

w; : weights



Benefits of using NURBS

e More degrees of freedom to control the curve (can control the
weights)

e Invariant under perspective transformation

- (Can project the control points onto the screen and interpolate
on the screen

- Don't need to apply the perspective transformation to all the
points on the curve

e (Can model conic sections such as circles, ellipses and hyperbolas



Example of changing weights

e Increasing the weight will bring the curve closer to the
corresponding control point

q

weight9=1 5 K weight9=5 4 1 weight9-=20




B-spline Surfaces

Given the following information:
a set of m+1 rows and n+1 control points Pi,j where 0 <72 <m
and 0 < 73 <n

Corresponding knot vectors in the u and v direction,

p(u,v) = E B, ,(u)B, ,(v)P, ; :non - rational B - spline
=0 7=0
E E Wi,jBi,p (u)Bj,q (V)Pi,j
p(u,v) = —= : NURBS
Wi,jBi,p (u)Bj,q (v)




Clamped, Closed and Open B-spline Surfaces

Since a B-spline curve can be clamped, closed or open, a B-spline surface can also have
three types in each direction.

e That is, we could ask to have a B-spline surface clamped in the u-direction and closed in
the v-direction.

e |f a B-spline is clamped in both directions, then this surface passes though control points

0.0, pm.o, Po.n and Pm,n

e If a B-spline surface is closed in one direction, then the surface becomes a tube.

e Closed in two direction : torus
- Problems handling objects of arbitrary topology, such as a ball, double torus
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Subdivision Surfaces

e A method to model smooth surfaces




3D subdivision surface

e Start with a rough shape first and subdivide it recursively
e Stop when the shape is smooth enough
e Used for modelling smooth surfaces




Motivation

e Shape modeling
- Topological restrictions of NURBS

surfaces

e Plane, Cylinder, and Torus

e |t is difficult to maintain smoothness at

seams of patchwork.

- Example: hiding seams in Woody (Toy Story)
[DeRose98]

- NURBS also require the control nets
consist of a regular rectangular grid of
control points

e LOD in a scene
- A coarse shape when far away, a smooth
dense surface when closer to the camera



Subdivision surface

e (Can handle arbitrary topology

Different Schemes

e Doo-Sabin 78

e Catmull-Clark ‘78

e Etc (Loop, Butterfly, and many others)



A Primer: Chaiken's Algorithm
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Doo-Sabin Subdivision

e An edge point is formed from the midpoint of each edge

e A face point is formed as the centroid of each polygon of the
mesh.

e Finally, each vertex in the new mesh is formed as the average

of
- a vertex in the old mesh,
- a face point for a polygon that touches that old vertex, and

- the edge points for the two edges that belong to that polygon

and touch that old vertex. old vertex

edge point

new vertex
face point



http://en.wikipedia.org/wiki/File:DooSabin_subdivision.png

Doo-Sabin Subdivision

old vertex

edge poilint

new vertex
face point

The new mesh, therefore, will
e create quadrilaterals for each edge in the old mesh,
e create a smaller n-sided polygon for each n-sided polygon in the old mesh, and

e create an n-sided polygon for each n-valence vertex (Valence being the
number of edges that touch the vertex).



Catmull-Clark Subdivision

o A face with n edges are subdivided into n quadrilaterals

e Quads are better than triangles at capturing the symmetries
of natural and man-made objects. Tube like surfaces (arms,
legs, fingers) are easier to model.




Catmull-Clark Subdivision
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Modelling with Catmull-Clark

e Subdivision produces smooth continuous surfaces.

e How can “sharpness” and creases be controlled in a
modeling environment?

ANSWER: Define new subdivision rules for “creased”

edges and vertices.

Tag Edges sharp edges.

If an edge is sharp, apply new sharp
subdivision rules.

Otherwise subdivide with normal
rules.




Sharp Edges...

e Tag Edges as “sharp” or “

e n=0-"

¢ n > 0-sharp

During Subdivision,

c - 0 1] o o oo (a) (b)
e if an edge is “sharp”, use sharp subdivision rules.

Newly created edges, are assigned a sharpness o
n-1.

—

e Ifanedgeis” " use normal smooth
subdivision rules.

IDEA: Edges with a sharpness of “n” do not get
subdivided smoothly for “n" iterations of the
algorithm.

In the picture on the right, the control mesh is
a unit cube

*Different sharpness applied




Sharp Rules

® FACE (unchanged)
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Another example of creases




Non-Integer Sharpness

e Density of newly generated mesh increases rapidly.
e In practice, 2 or 3 iterations of subdivision is sufficient.

e Need better “control.

IDEA: Interpolate between smooth and sharp rules for non-
integer sharpness values of n.



Subdivision Surfaces in character animation
[DeRose98]

Used for first time in
Geri's game to overcome
topological restriction of

NURBS

Modelled Geri's head,
hands, jacket, trousers,
shirt, tie, and shoes

Developed cloth

simulation methods




Demo movie [Geri's Game]

e Academy Award winning movie by Pixar

Demo of Catmull-Clark subdivision surface

e http://www.youtube.com/watch?
v=IU8f0hnorU8&feature=related



http://www.youtube.com/watch?v=lU8f0hnorU8&feature=related

Adaptive Subdivision

e Not all regions of a model
need to be subdivided.

e |dea: Use some criteria and
adaptively subdivide mesh
where needed.

— Curvature

- Screen size ( make triangles
< size of pixel )

- View dependence

e Distance from viewer
e Silhouettes

e In view frustum

— Careful! Must ensure that
“cracks” aren't made

View-dependent refinement of progressive meshes
Hugues Hoppe.
(SIGGRAPH "97)



Subdivision Surface Summary

e Advantages

- Simple method for describing complex surfaces
- Relatively easy to implement

- Arbitrary topology

- Local support

- Guaranteed continuity

— Multi-resolution

o Difficulties
- Intuitive specification

— Parameterization

- |Intersections
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Links

e http://www.ibiblio.org/e-notes/Splines/basis.html

e http://i33www.ira.uka.de/applets/mocca/html/noplugin/BSplineBasis/
AppBSplineBasis/index.html

e http://geom.ibds.kit.edu/applets/mocca/html/noplugin/IntBSpline/

Applnsertion /index.html

e http://www.multires.caltech.edu/teaching/demos/java/chaikin.htm

e http://i33www.ira.uka.de/applets/mocca/html/noplugin/curves.html

e http://www.rose-hulman.edu/~finn/CCLI/Applets/DooSabinApplet.html
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