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Overview

• More on Bézier and B-splines 

• de Casteljau’s algorithm 

• General form of B-splines 

• de Boor’s algorithm 

• Knot insertion 

• NURBS 

• Subdivision surfaces



de Casteljau’s algorithm

• A method to evaluate (sample points in) or draw a Bézier 
curve 

• Works with Bézier curves of any degree 

• A precise method to evaluate the curve

De Casteljau’s Algorithm

• A method to evaluate (sample points in) or draw 
the Bezier curve 

• The Bezier curve of any degree can be handled
• A precise way to evaluate the curves 



de Casteljau’s algorithm

• Given the control points                and the parameter value 

• Repeat the following procedure: 

• Then           is the point with parameter value   on the 
Bézier curve

de Casteljau’s Algorithm

•  P1, . . . , Pn
0  t  1

P r
i (t) = (1� t)P r�1

i (t) + tP r�1
i+1 (t)

P 0
i (t) = Pi

Pn
0 (t) t



Why does this work?

• In the quadratic Bézier curve case with 3 control points, 

• By inserting the first two equations into the third we obtain 

• Doing this for 4 control points will give the cubic formula we saw 
last week

P 1
0 (t) = (1� t)P0 + tP1

P 1
1 (t) = (1� t)P1 + tP2

P 2
0 (t) = (1� t)P 1

0 + tP 1
1

P0, P1, P2

P 2
0 (t) = (1� t)2P0 + 2t(1� t)P1 + t2P2



Why do we need this?

• The explicit representation can result in some instability 

• Control points are randomly changed by 0.001 

• The curve from de Casteljau’s algorithm stays almost the 
same 

• The curve from the polynomial basis form can deviate from 
the original curve if the degree is high

Why do we need this?
• The explicit representation (monomial form) that I 

presented last week can result in some instability
• Say the control points are randomly changed for 

0.001.
• The curve computed by the de Casteljau’s algorithm 

stays almost the same. 
• The curve by the polynomial basis form can deviate 

from the original curve if the degree is high



Connecting Bézier patches

• The same thing applies to patches 

• The degree of the surface can easily 
become high since it is the 
multiplication of two curves, e.g. 
Bicubic is of degree 6 

• The error of 16 control points is 
accumulated

Connecting many Bezier Patches in 
the polynomial form

• The same story applies to surfaces 
• The degree of surface can easily go high, as 

they are the multiplication of two curves
• Bicubic → 6 
• The error of 16
control points will
be accumulated



Overview

• More on Bézier and B-splines 

• de Casteljau’s algorithm 

• General form of B-splines 

• de Boor’s algorithm 

• Knot insertion 

• NURBS 

• Subdivision surfaces



a B-spline of order k  (polynomial of degree k-1) is a parametric 
curve composed of a linear combination of basis B-splines       : 

                         are the control points 

Knots:                               -  the knots subdivide the domain 
of the B-spline curve into a set of knot spans   

The B-splines can be defined by

B-Splines: general form
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B-spline basis
Bspline Basis 



B-spline basis
Bspline Basis (2)



Producing curves using B-splines

• The basis functions are multiplied by the control points to 
define arbitrary curves
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Producing Curves by B-Splines

• The basis functions are multiplied to the control 
points and to define arbitrary curves

3
t

m+1
0



Knots

• The knots produce a vector that defines the domain of the 
curve 

• The knots must be in increasing order 

• Not necessarily uniform spacing 

• If uniformly sampled and degree is 3 we have a uniform cubic 
B-spline

Knots
• The knots produce a vector that defines the 

domain of the curve
• The knots must be in the increasing order 
• But not necessarily uniform 
• If uniformly sampled and the degree is 3                                    

uniform cubic bspline

0     1      2       3       4       5       6      7       8       9      10     11     12      13     

knots



Knots

• Non-uniform knots:

Knots

Here is an example of non-uniform knots

http://i33www.ira.uka.de/applets/mocca/html/noplugin/BSplineBasis/AppBSplineBasis/index.html



B-spline terms

• Order    : the number of control points affecting the sampled value 

• Degree              : the degree of the basis function polynomial 

• Control points 

• Knots 

• An important rule: 

• The domain of the curve is 

• Below, k=4, m=9, domain is 

Some Terms 
• Order k:  the number of control points that affect the sampled 

value 
• Degree k-1 (the basis functions are polynomials of degree k-1)
• Control points Pi (i=0,…,m)
• Knots : tj, (j=0,…, n)
• An important rule :   n – m = k 
• The domain of function  tk-1 ≦ t ≦tm+1  

– Below, k = 4, m = 9,    domain, t3 ≦ t ≦t10  

3
t

m+1
0

tj (j = 0, . . . , n)

Pi i = (0, . . . ,m)

n�m = k

k

k � 1

tk�1  t  tm+1

t3  t  t10



Clamped B-splines

• The first and last knot values are repeated with multiplicity 
equal to the order (degree + 1)  

• The end points pass the control point 

• For cubic bsplines, the multiplicity of the first / last knots 
must be 4 (repeated four times) 



Controlling the shape of B-splines

• Moving the control points is the most obvious way to control 
bspline curves 

• Changing the position of control point Pi only affects the 
interval [ti, ti+k), where k is the order of a B-spline curve  
– Editing the shape through the knot vector is not 

very intuitive



Overview

• More on Bézier and B-splines 

• de Casteljau’s algorithm 

• General form of B-splines 

• de Boor’s algorithm 

• Knot insertion 

• NURBS 

• Subdivision surfaces



de Boor’s algorithm

• B-spline version of de Casteljau’s algorithm 

• A precise method to evaluate the curve 

• Starting from control points and parameter value t, 
recursively solve:

De Boor’s Algorithm

•  



Example

• Assume we have a cubic B-spline with knot vector: 

• Computing the point at  

• Then                  and the control points that affect the final 
position are 

Example
• Assume we have a cubic B-spline whose knot 

vector is {0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1}
• Let’s compute a point at t = 0.4
• Then,  t4 < t < t5,  and the control points that 

affect the final position are P4, P3, P2, P1

[0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1]
t = 0.4

t4  t  t5
P4, P3, P2, P1



Example
Example

• Assume we have a cubic B-spline whose knot 
vector is {0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1}

• Let’s compute a point at t = 0.4
• Then,  t4 < t < t5,  and the control points that 

affect the final position are P4, P3, P2, P1



Example

Example
• Assume we have a cubic B-spline whose knot 

vector is {0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1}
• Let’s compute a point at t = 0.4
• Then,  t4 < t < t5,  and the control points that 

affect the final position are P4, P3, P2, P1



Example

Example
• Assume we have a cubic B-spline whose knot 

vector is {0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1}
• Let’s compute a point at t = 0.4
• Then,  t4 < t < t5,  and the control points that 

affect the final position are P4, P3, P2, P1



What if you want to edit some details?

• You might want to add some high resolution details in a 
particular area whilst leaving the rest of the curve unchanged

What if you want to edit some 
details? 

• You might want to add some high resolution details 
at a particular area while keeping the rest the same 



Knot insertion 

• We can do this by knot Insertion 

• New knots can be added without changing the shape of the 
curve 

• Because of the basic rule n-m = k (n+1: number of knots, m
+1: the number control points, k: order) the number of 
control points will also increase



Knot insertion 

• For a curve of degree f we remove f-1 points and add f points 

• i.e. for a cubic B-spline, remove 2 points and add 3 points



Knot insertion 

• If the new knot t is inserted into the span [tj, tj+1),  
the new control points can be computed by 

where Qi is the new control point and ai is computed by  

Pj-k+1, Pj-k+2, ..., Pj-1, Pj is replaced with Pj-k+1, Qj-k+2, ..., 
Qj-1, Qj ,Pj.  
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Example 

• A bspline curve of 
degree 3 (k=4) having 
the following knots  

• t=0.5 inserted

t0 to t3 t4 t5 t6 t7 t8 to t11 

0 0.2 0.4 0.6 0.8 1 

t0 to t3 t4 t5 t6 t7 t8 t9 to t12 

0 0.2 0.4 0.5 0.6 0.8 1 



Example 

• A bspline curve of 
degree 3 (k=4) having 
the following knots  

• t=0.5 inserted

t0 to t3 t4 t5 t6 t7 t8 to t11 

0 0.2 0.4 0.6 0.8 1 

t0 to t3 t4 t5 t6 t7 t8 t9 to t12 

0 0.2 0.4 0.5 0.6 0.8 1 

Example 

• A bspline curve of 
degree 3 (k=4) having 
the following knots 

• t=0.5 inserted

t0 to t3 t4 t5 t6 t7 t8 to t11 

0 0.2 0.4 0.6 0.8 1 

t0 to t3 t4 t5 t6 t7 t8 t9 to t12 

0 0.2 0.4 0.5 0.6 0.8 1 



Example 

• A bspline curve of 
degree 3 (k=4) having 
the following knots  

• t=0.5 inserted

t0 to t3 t4 t5 t6 t7 t8 to t11 

0 0.2 0.4 0.6 0.8 1 

t0 to t3 t4 t5 t6 t7 t8 t9 to t12 

0 0.2 0.4 0.5 0.6 0.8 1 
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Summary of B-splines

• Knot vector defines the domain 

• Evaluation by de Boor’s algorithm 

• Controlling the shape by the control points 

• Clamping the points by increasing the multiplicity of the 
knots at the end points 

• Increase the resolution by knot insertion



Overview

• More on Bézier and B-splines 

• de Casteljau’s algorithm 

• General form of B-splines 

• de Boor’s algorithm 

• Knot insertion 

• NURBS 

• Subdivision surfaces



NURBS (Non-uniform rational B-spline) 

• Standard curves/surface representation in computer aided 
design  

   : control points 
     :  Bspline basis of order k 
    :  weights
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Benefits of using NURBS

• More degrees of freedom to control the curve (can control the 
weights) 

• Invariant under perspective transformation  
– Can project the control points onto the screen and interpolate 

on the screen 
– Don’t need to apply the perspective transformation to all the 

points on the curve 

• Can model conic sections such as circles, ellipses and hyperbolas 



Example of changing weights

• Increasing the weight will bring the curve closer to the 
corresponding control point 



B-spline Surfaces 

• Given the following information:  
• a set of m+1 rows and n+1 control points       where           

and   
• Corresponding knot vectors in the u and v direction, 
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Clamped, Closed and Open B-spline Surfaces 

• Since a B-spline curve can be clamped, closed or open, a B-spline surface can also have 
three types in each direction.  

• That is, we could ask to have a B-spline surface clamped in the u-direction and closed in 
the v-direction.  

• If a B-spline is clamped in both directions, then this surface passes though control points 
p0,0, pm,0, p0,n and pm,n 

• If a B-spline surface is closed in one direction, then the surface becomes a tube.  

• Closed in two direction :  torus  
– Problems handling objects of arbitrary topology, such as a ball, double torus



Overview

• More on Bézier and B-splines 

• de Casteljau’s algorithm 

• General form of B-splines 

• de Boor’s algorithm 

• Knot insertion 

• NURBS 

• Subdivision surfaces



Subdivision Surfaces

• A method to model smooth surfaces 



3D subdivision surface

• Start with a rough shape first and subdivide it recursively   
• Stop when the shape is smooth enough  
• Used for modelling smooth surfaces  



Motivation

• Shape modeling  
– Topological restrictions of NURBS 

surfaces 
• Plane, Cylinder, and Torus 
• It is difficult to maintain smoothness at 

seams of patchwork. 
– Example:  hiding seams in Woody (Toy Story) 

[DeRose98] 

– NURBS also require the control nets 
consist of a regular rectangular grid of 
control points 

• LOD in a scene 
– A coarse shape when far away, a smooth 

dense surface when closer to the camera



Subdivision surface
• Can handle arbitrary topology  

Different Schemes  
• Doo-Sabin ‘78 
• Catmull-Clark  ‘78 
• Etc (Loop, Butterfly, and many others) 



A Primer: Chaiken’s Algorithm
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Doo-Sabin Subdivision
• An edge point is formed from the midpoint of each edge  
• A face point is formed as the centroid of each polygon of the 

mesh.  
• Finally, each vertex in the new mesh is formed as the average 

of  
– a vertex in the old mesh,  
– a face point for a polygon that touches that old vertex, and  
– the edge points for the two edges that belong to that polygon 

and touch that old vertex. 

http://en.wikipedia.org/wiki/File:DooSabin_subdivision.png


Doo-Sabin Subdivision

The new mesh, therefore, will  
• create quadrilaterals for each edge in the old mesh,  
• create a smaller n-sided polygon for each n-sided polygon in the old mesh, and  
• create an n-sided polygon for each n-valence vertex (Valence being the 

number of edges that touch the vertex). 



Catmull-Clark Subdivision

• A face with n edges are subdivided into n quadrilaterals 

• Quads are better than triangles at capturing the symmetries 
of natural and man-made objects.  Tube like surfaces (arms, 
legs, fingers) are easier to model.



Catmull-Clark Subdivision
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Modelling with Catmull-Clark

• Subdivision produces smooth continuous surfaces.   
• How can “sharpness” and creases be controlled in a 

modeling environment?  
ANSWER: Define new subdivision rules for “creased” 

edges and vertices.

1. Tag Edges sharp edges. 

2. If an edge is sharp, apply new sharp 
subdivision rules. 

3. Otherwise subdivide with normal 
rules.



Sharp Edges…

• Tag Edges as “sharp” or “not-sharp” 

• n = 0 – “not sharp” 

• n > 0 – sharp 

During Subdivision,  

• if an edge is “sharp”, use sharp subdivision rules.  
Newly created edges, are assigned a sharpness of 
n-1. 

• If an edge is “not-sharp”, use normal smooth 
subdivision rules. 

IDEA: Edges with a sharpness of “n” do not get 
subdivided smoothly for “n” iterations of the 

algorithm.

•In the picture on the right, the control mesh is 
a unit cube  

•Different sharpness applied



Sharp Rules
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Another example of creases 



Non-Integer Sharpness

• Density of newly generated mesh increases rapidly. 

• In practice, 2 or 3 iterations of subdivision is sufficient. 

• Need better “control”. 

IDEA:  Interpolate between smooth and sharp rules for non-
integer sharpness values of n.



Subdivision Surfaces in character animation 
[DeRose98]

• Used for first time in 
Geri’s game to overcome 
topological restriction of 
NURBS 

• Modelled Geri’s head, 
hands, jacket, trousers, 
shirt, tie, and shoes 

• Developed cloth 
simulation methods



Demo movie [Geri’s Game]

• Academy Award winning movie by Pixar  

Demo of Catmull-Clark subdivision surface  

• http://www.youtube.com/watch?
v=lU8f0hnorU8&feature=related

http://www.youtube.com/watch?v=lU8f0hnorU8&feature=related


Adaptive Subdivision

• Not all regions of a model 
need to be subdivided. 

• Idea:  Use some criteria and 
adaptively subdivide mesh 
where needed. 
– Curvature 
– Screen size ( make triangles 

< size of pixel ) 
– View dependence  

• Distance from viewer 
• Silhouettes 
• In view frustum 

– Careful! Must ensure that 
“cracks” aren’t made

crack

subdivide

View-dependent refinement of progressive meshes  
Hugues Hoppe. 
(SIGGRAPH ’97)



Subdivision Surface Summary 

• Advantages 
– Simple method for describing complex surfaces  
– Relatively easy to implement  
– Arbitrary topology  
– Local support  
– Guaranteed continuity  
– Multi-resolution  

• Difficulties 
– Intuitive specification   
– Parameterization  
– Intersections 
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Links

• http://www.ibiblio.org/e-notes/Splines/basis.html 

• http://i33www.ira.uka.de/applets/mocca/html/noplugin/BSplineBasis/
AppBSplineBasis/index.html 

• http://geom.ibds.kit.edu/applets/mocca/html/noplugin/IntBSpline/
AppInsertion/index.html 

• http://www.multires.caltech.edu/teaching/demos/java/chaikin.htm 

• http://i33www.ira.uka.de/applets/mocca/html/noplugin/curves.html 

• http://www.rose-hulman.edu/~finn/CCLI/Applets/DooSabinApplet.html

http://www.ibiblio.org/e-notes/Splines/basis.html
http://i33www.ira.uka.de/applets/mocca/html/noplugin/BSplineBasis/AppBSplineBasis/index.html
http://geom.ibds.kit.edu/applets/mocca/html/noplugin/IntBSpline/AppInsertion/index.html
http://www.multires.caltech.edu/teaching/demos/java/chaikin.htm
http://i33www.ira.uka.de/applets/mocca/html/noplugin/curves.html
http://www.rose-hulman.edu/~finn/CCLI/Applets/DooSabinApplet.html

