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Characters and objects

• Important for composing the scene  
• Need to design and model them in the first place



Curves and curved surfaces

Can produce smooth surfaces with less parameters 

• Easier to design  
• Can efficiently preserve complex structures
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Overview

• Parametric curves 
– Introduction 
– Hermite curves 
– Bezier curves 
– Uniform cubic B-splines 
– Catmull-Rom spline 

• Bicubic patches 
• Tessellation  
– Adaptive tesselation



Types of Curves and Surfaces 

• Explicit 

• Implicit 

• Parametric

y = mx+ b

ax+ by + c = 0

x = x0 + (x1 � x0)t

y = y0 + (yt � y0)t

x = x0 + r cos ✓

y = y0 + r sin ✓



Why parametric?

• Simple and flexible  
• The function of each coordinate can be defined independently. 

• (x(t), y(t)) : 1D curve in 2D space 
• (x(t), y(t), z(t)) : 1D curve in 3D space 
• (x(s,t), y(s,t), z(s,t)) : 2D surface in 3D space 

• Polynomial are suitable for creating smooth surfaces with less 
computation

x(t) = a3t
3 + a2t

2 + a1t+ a0
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Hermite curves

• A cubic polynomial  

• t ranging from 0 to 1 

• Polynomial can be specified by the position of, and gradient 

at, each endpoint of curve.

x(t) = a3t
3 + a2t

2 + a1t+ a0



Family of Hermite curves.

x(t)

y(t)
Note :  
Start point is on left.



Finding Hermite coefficients

• Substituting for t at each endpoint: 

• Solution is

Can solve them by using the boundary conditions

x(t) = a3t
3 + a2t

2 + a1t+ a0 x

0(t) = 3a3t
2 + 2a2t+ a1

x0 = x(0) = a0

x1 = x(1) = a3 + a2 + a1 + a0
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The Hermite matrix

The resultant polynomial can be expressed in matrix form:

   ( q is the control vector)

We can now define a parametric polynomial for each coordinate 
required independently, ie. X(t), Y(t) and Z(t)

x(t) = t

T
Mhq



Hermite Basis (Blending) Functions



Hermite Basis (Blending) Functions

The graph shows the shape 
of the four basis functions – 

often called blending 
functions. 

They are labelled with the elements 
of the control vector that they 

weight. 

Note that at each end only position 
is non-zero, so the curve must touch 

the endpoints
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Bézier Curves

• Hermite cubic curves are difficult to model – need to specify 
point and gradient. 

• Paul de Casteljau who was working for Citroën, invented 
another way to compute the curves 

• Publicised by Pierre Bézier from Renault 

• By only giving points instead of the derivatives



Bézier Curves

Can define a curve by specifying 2 
endpoints and 2 additional control 

points 

The two middle points are used to 
specify the gradient at the 

endpoints 

Fit within the convex hull by the 
control points
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Bézier Matrix

• The cubic form is the most popular (M is the Bézier matrix) 

• With    n=4   and   r=0,1,2,3    we get: 

• Similarly for y(t) and z(t)

x(t) = t

T
Mbq



Bézier blending functions

This is how the 
polynomials for each 

coefficient look 

The functions sum to 1 at 
any point along the curve. 

Endpoints have full weight 

The weights of each 
function is clear and the 
labels show the control 
points being weighted.
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How to produce complex, long curves?

• We could only use 4 control points to design curves. 

• What if we want to produce long curves with complex 
shapes. 

• How can we do that?

Lecture 5



Drawing Complex Long Curves

● Using higher order curves 
○ costly  
○ Need many multiplications 

● Piece together low order curves 
○ Need to make sure the connection points are smooth



Continuity between curve segments

• If the direction and magnitude of          are equal at 
the join point, the curve is called     continuous  

• i.e.  if two curve segments are simply connected, the 
curve is      continuous 

• If the tangent vectors of two cubic curve segments 
are equal at the join point, the curve is      continuous 

dnX(t)

dtn

Cn

C0

C1



Continuity between curve segments

• If the directions (but not necessarily the magnitudes) 
of two segments’ tangent vectors are equal at the 
join point, the curve has G1 continuity



Continuity with Hermite and Bézier Curves

– How to achieve C0,C1,G1 continuity?



Joining Bézier Curves

• G1 continuity is provided at the endpoint when 

• if k=1, C1 continuity is obtained 

p3 � p2 = k(q1 � q0)



Uniform cubic B-splines

• Another popular form of curve 
• The curve does not necessarily pass through the control 

points  
• Can produce a longer continuous curve without worrying 

about the boundaries 
• Has C2 continuity at the boundaries



Uniform cubic B-splines

• The matrix form and the basis functions 
• The knots specify the range of the curve



Uniform cubic B-splines

• This is how the basis splines look over the domain 
• The initial part is defined after passing the fourth knot
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t86 m
m+1

0



Another usage of uniform cubic B-splines

• Representing the joint angle trajectories of characters and 
robots  

• Need more control points to represent a longer continuous 
movement   

• Need C2 continuity to make the acceleration smooth 
• And not changing the torques suddenly



Catmull-Rom Spline

• A curve that interpolates control points 
• C1 continuous  
• The tangent vectors at the endpoints of a Hermite curve are 

set such that they are decided by the two surrounding control 
points



Catmull-Rom Spline

• C1 continuity
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Bicubic patches

• The concept of parametric curves can be extended to surfaces  
• The cubic parametric curve is in the form of  

• where           -                control points, M is the basis 
matrix (Hermite or Bezier,…),

q(t) = tTMq

q = (q1, q2, q3, q4)
tT = (t3, t2, t, 1)



Bicubic patches

• Now we assume    to vary along a parameter s, 
•   
•          are themselves cubic curves 
• Bicubic patch has degree 6

Qi(s, t) = tTM [q1(s), q2(s), q3(s), q4(s)]
qi

qi(s)





Bézier example

• We compute (x,y,z) by 



Today

• Parametric curves 
– Introduction 
– Hermite curves 
– Bezier curves 
– Uniform cubic B-splines 
– Catmull-Rom spline 

• Bicubic patches 
• Tessellation  
– Adaptive tesselation



Displaying Bicubic patches.

• Directly rasterising bicubic patches is not so easy  
• Need to convert the bicubic patches into a polygon mesh  

– tessellation 
• Need to compute the normals 

– vector cross product of the 2 tangent vectors.



Normal Vectors

Tangent vectors can be computed by computing the partial 
derivatives 
Then computing the cross product of the two partial 
derivative vectors



Tessellation

• As computers are optimised for rendering triangles, the easiest 
way to display parametric surfaces is to convert them into 
triangle meshes 

• The simplest way is to do uniform tessellation, which samples 
points uniformly in the parameter space



Uniform Tessellation

• Sampling points uniformly with the parameters 

• What are the problems with uniform tessellation? 

• Which area needs more tessellation? 

• Which area does not need much tessellation?



Adaptive Tessellation

• Adaptive tessellation – adapt the size of triangles to the shape 
of the surface

i.e., more triangles where the 
surface bends more  

On the other hand, for flat 
areas we do not need many 

triangles



Adaptive Tessellation

• For every triangle edges, check if each edge is tessellated 
enough (curveTessEnough()) 

• If all edges are tessellated enough, check if the whole triangle 
is tessellated enough as a whole (triTessEnough()) 

• If one or more of the edges or the triangle’s interior is not 
tessellated enough, then further tessellation is needed 



Adaptive Tessellation

• When an edge is not tessellated enough, a point is created 
halfway between the edge points’ uv-values  

• New triangles are created and the tessellator is once again 
called with the new triangles as input

Four cases of further 
tessellation

Adaptive Tessellation

• When an edge is not tessellated enough, a 
point is created halfway between the edge 
points’ uv-values 

• New triangles are created and the tessellator 
is once again called with the new triangles as 
input

Four cases of further tessellation



Adaptive Tessellation

AdaptiveTessellate(p,q,r) 

• tessPQ=not curveTessEnough(p,q) 
• tessQR=not curveTessEnough(q,r) 
• tessRP=not curveTessEnough(r,p) 

• If (tessPQ and tessQR and tessRP)  
– AdaptiveTessellate(p,(p+q)/2,(p+r)/2); 
– AdaptiveTessellate(q,(q+r)/2,(q+p)/2); 
– AdaptiveTessellate(r,(r+p)/2,(r+q)/2); 
– AdaptiveTessellate((p+q)/2,(q+r)/2,(r+p)/2); 

• else if (tessPQ and tessQR)  
– AdaptiveTessellate(p,(p+q)/2,r); 
– AdaptiveTessellate((p+q)/2,(q+r)/2,r); 
– AdaptiveTessellate((p+q)/2,q,(q+r)/2); 

• else if (tessPQ)  
– AdaptiveTessellate(p,(p+q)/2,r); 
– AdaptiveTessellate(q,r,(p+q)/2); 

• else if (not triTessEnough(p,q,r)) 
- AdaptiveTessellate((p+q+r)/3,p,q);  
- AdaptiveTessellate((p+q+r)/3,q,r);  
- AdaptiveTessellate((p+q+r)/3,r,p);  

end;



curveTessEnough

• Say you are to judge whether ab needs tessellation 
• You can compute the midpoint c, and compute the curve’s 

distance l from d, the midpoint of ab  
• Check if l/||a-b|| is under a threshold 
• Can do something similar for triTessEnough 

– Sample at the mass center and calculate its distance from 
the triangle

curveTessEnough
• Say you are to judge whether ab needs 

tessellation
• You can compute the midpoint c, and compute 

the curve’s distance l from d, the midpoint of ab 
• Check if l/||a-b|| is under a threshold
• Can do something similar for triTessEnough

– Sample at the mass center and calculate its distance 
from the triangle

a b

c

d



On-the-fly tessellation

• In many cases, it is preferred to tessellate on-the-fly  
• The size of the data can be kept small 
• Tessellation is a highly parallel process 

– Can make use of the GPU  
• The shape may deform in real-time



On-the-fly tessellation

• So, say in a dynamic environment, what are the factors 
that we need to take into account when doing the 
tessellation? 

– in addition to curvature?



Other factors?



Other factors?



Other factors? 



Other factors to evaluate

• Inside the view frustum 
• Front facing 
• Occupying a large area in screen space 
• Close to the silhouette of the object 
• Illuminated by a significant amount of specular lighting



Summary

• Hermite, Bezier, B-Spline curves 
• Bicubic patches 
• Tessellation 

– Triangulation of parametric surfaces 
– On-the-fly tessellation
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Links

• http://www.rose-hulman.edu/~finn/CCLI/Applets/
CubicHermiteApplet.html 

• http://www.rose-hulman.edu/~finn/CCLI/Applets/
BezierBernsteinApplet.html 

• http://www.rose-hulman.edu/~finn/CCLI/Applets/
BSplineApplet.html 

• http://www.personal.psu.edu/dpl14/java/
parametricequations/beziersurfaces/index.html

http://www.rose-hulman.edu/~finn/CCLI/Applets/CubicHermiteApplet.html
http://www.rose-hulman.edu/~finn/CCLI/Applets/BezierBernsteinApplet.html
http://www.rose-hulman.edu/~finn/CCLI/Applets/BSplineApplet.html
http://www.personal.psu.edu/dpl14/java/parametricequations/beziersurfaces/index.html

