
Computer Graphics 16 - Curves and Surfaces 1

Tom Thorne

Slides courtesy of Taku Komura

www.inf.ed.ac.uk/teaching/courses/cg

Characters and objects

• Important for composing the scene
• Need to design and model them in the first place

Curves and curved surfaces

Can produce smooth surfaces with less parameters

• Easier to design
• Can efficiently preserve complex structures

P3

P4

P2

P1

Overview

• Parametric curves
– Introduction
– Hermite curves
– Bezier curves
– Uniform cubic B-splines
– Catmull-Rom spline

• Bicubic patches
• Tessellation
– Adaptive tesselation

Types of Curves and Surfaces

• Explicit

• Implicit

• Parametric

y = mx+ b

ax+ by + c = 0

x = x0 + (x1 � x0)t

y = y0 + (yt � y0)t

x = x0 + r cos ✓

y = y0 + r sin ✓

Why parametric?

• Simple and flexible
• The function of each coordinate can be defined independently.

• (x(t), y(t)) : 1D curve in 2D space
• (x(t), y(t), z(t)) : 1D curve in 3D space
• (x(s,t), y(s,t), z(s,t)) : 2D surface in 3D space

• Polynomial are suitable for creating smooth surfaces with less
computation

x(t) = a3t
3 + a2t

2 + a1t+ a0

Overview

• Parametric curves
– Introduction
– Hermite curves
– Bezier curves
– Uniform cubic B-splines
– Catmull-Rom spline

• Bicubic patches
• Tessellation
– Adaptive tesselation

Hermite curves

• A cubic polynomial

• t ranging from 0 to 1

• Polynomial can be specified by the position of, and gradient

at, each endpoint of curve.

x(t) = a3t
3 + a2t

2 + a1t+ a0

Family of Hermite curves.

x(t)

y(t)
Note :
Start point is on left.

Finding Hermite coefficients

• Substituting for t at each endpoint:

• Solution is

Can solve them by using the boundary conditions

x(t) = a3t
3 + a2t

2 + a1t+ a0 x

0(t) = 3a3t
2 + 2a2t+ a1

x0 = x(0) = a0

x1 = x(1) = a3 + a2 + a1 + a0

x

0
0 = x

0(0) = a1

x

0
1 = x

0(1) = 3a3 + 2a2 + a1

a0 = x0

a2 = �3x0 � 2x0
0 + 3x1 � x

0
1

a1 = x

0
0

a3 = 2x0 + x

0
0 � 2x1 + x

0
1

x(t) =(2x0 + x

0
0 � 2x1 + x

0
1)t

3 + (�3x0 � 2x0
0 + 3x1 � x

0
1)t

2

+ x

0
0t+ x0

The Hermite matrix

The resultant polynomial can be expressed in matrix form:

 (q is the control vector)

We can now define a parametric polynomial for each coordinate
required independently, ie. X(t), Y(t) and Z(t)

x(t) = t

T
Mhq

Hermite Basis (Blending) Functions

Hermite Basis (Blending) Functions

The graph shows the shape
of the four basis functions –

often called blending
functions.

They are labelled with the elements
of the control vector that they

weight.

Note that at each end only position
is non-zero, so the curve must touch

the endpoints

x0 x1

x

0
0

x

0
1

Bézier Curves

• Hermite cubic curves are difficult to model – need to specify
point and gradient.

• Paul de Casteljau who was working for Citroën, invented
another way to compute the curves

• Publicised by Pierre Bézier from Renault

• By only giving points instead of the derivatives

Bézier Curves

Can define a curve by specifying 2
endpoints and 2 additional control

points

The two middle points are used to
specify the gradient at the

endpoints

Fit within the convex hull by the
control points

P2

P1

P4

P3

P3

P4

P2

P1

Bézier Matrix

• The cubic form is the most popular (M is the Bézier matrix)

• With n=4 and r=0,1,2,3 we get:

• Similarly for y(t) and z(t)

x(t) = t

T
Mbq

Bézier blending functions

This is how the
polynomials for each

coefficient look

The functions sum to 1 at
any point along the curve.

Endpoints have full weight

The weights of each
function is clear and the
labels show the control
points being weighted.

q0

q1 q2

q3

How to produce complex, long curves?

• We could only use 4 control points to design curves.

• What if we want to produce long curves with complex
shapes.

• How can we do that?

Lecture 5

Drawing Complex Long Curves

● Using higher order curves
○ costly
○ Need many multiplications

● Piece together low order curves
○ Need to make sure the connection points are smooth

Continuity between curve segments

• If the direction and magnitude of are equal at
the join point, the curve is called continuous

• i.e. if two curve segments are simply connected, the
curve is continuous

• If the tangent vectors of two cubic curve segments
are equal at the join point, the curve is continuous

dnX(t)

dtn

Cn

C0

C1

Continuity between curve segments

• If the directions (but not necessarily the magnitudes)
of two segments’ tangent vectors are equal at the
join point, the curve has G1 continuity

Continuity with Hermite and Bézier Curves

– How to achieve C0,C1,G1 continuity?

Joining Bézier Curves

• G1 continuity is provided at the endpoint when

• if k=1, C1 continuity is obtained

p3 � p2 = k(q1 � q0)

Uniform cubic B-splines

• Another popular form of curve
• The curve does not necessarily pass through the control

points
• Can produce a longer continuous curve without worrying

about the boundaries
• Has C2 continuity at the boundaries

Uniform cubic B-splines

• The matrix form and the basis functions
• The knots specify the range of the curve

Uniform cubic B-splines

• This is how the basis splines look over the domain
• The initial part is defined after passing the fourth knot

10/10/2008 Lecture 5 843

t86 m
m+1

0

Another usage of uniform cubic B-splines

• Representing the joint angle trajectories of characters and
robots

• Need more control points to represent a longer continuous
movement

• Need C2 continuity to make the acceleration smooth
• And not changing the torques suddenly

Catmull-Rom Spline

• A curve that interpolates control points
• C1 continuous
• The tangent vectors at the endpoints of a Hermite curve are

set such that they are decided by the two surrounding control
points

Catmull-Rom Spline

• C1 continuity

Overview

• Parametric curves
– Introduction
– Hermite curves
– Bezier curves
– Uniform cubic B-splines
– Catmull-Rom spline

• Bicubic patches
• Tessellation
– Adaptive tesselation

Bicubic patches

• The concept of parametric curves can be extended to surfaces
• The cubic parametric curve is in the form of

• where - control points, M is the basis
matrix (Hermite or Bezier,…),

q(t) = tTMq

q = (q1, q2, q3, q4)
tT = (t3, t2, t, 1)

Bicubic patches

• Now we assume to vary along a parameter s,
•
• are themselves cubic curves
• Bicubic patch has degree 6

Qi(s, t) = tTM [q1(s), q2(s), q3(s), q4(s)]
qi

qi(s)

Bézier example

• We compute (x,y,z) by

Today

• Parametric curves
– Introduction
– Hermite curves
– Bezier curves
– Uniform cubic B-splines
– Catmull-Rom spline

• Bicubic patches
• Tessellation
– Adaptive tesselation

Displaying Bicubic patches.

• Directly rasterising bicubic patches is not so easy
• Need to convert the bicubic patches into a polygon mesh

– tessellation
• Need to compute the normals

– vector cross product of the 2 tangent vectors.

Normal Vectors

Tangent vectors can be computed by computing the partial
derivatives
Then computing the cross product of the two partial
derivative vectors

Tessellation

• As computers are optimised for rendering triangles, the easiest
way to display parametric surfaces is to convert them into
triangle meshes

• The simplest way is to do uniform tessellation, which samples
points uniformly in the parameter space

Uniform Tessellation

• Sampling points uniformly with the parameters

• What are the problems with uniform tessellation?

• Which area needs more tessellation?

• Which area does not need much tessellation?

Adaptive Tessellation

• Adaptive tessellation – adapt the size of triangles to the shape
of the surface

i.e., more triangles where the
surface bends more

On the other hand, for flat
areas we do not need many

triangles

Adaptive Tessellation

• For every triangle edges, check if each edge is tessellated
enough (curveTessEnough())

• If all edges are tessellated enough, check if the whole triangle
is tessellated enough as a whole (triTessEnough())

• If one or more of the edges or the triangle’s interior is not
tessellated enough, then further tessellation is needed

Adaptive Tessellation

• When an edge is not tessellated enough, a point is created
halfway between the edge points’ uv-values

• New triangles are created and the tessellator is once again
called with the new triangles as input

Four cases of further
tessellation

Adaptive Tessellation

• When an edge is not tessellated enough, a
point is created halfway between the edge
points’ uv-values

• New triangles are created and the tessellator
is once again called with the new triangles as
input

Four cases of further tessellation

Adaptive Tessellation

AdaptiveTessellate(p,q,r)

• tessPQ=not curveTessEnough(p,q)
• tessQR=not curveTessEnough(q,r)
• tessRP=not curveTessEnough(r,p)

• If (tessPQ and tessQR and tessRP)
– AdaptiveTessellate(p,(p+q)/2,(p+r)/2);
– AdaptiveTessellate(q,(q+r)/2,(q+p)/2);
– AdaptiveTessellate(r,(r+p)/2,(r+q)/2);
– AdaptiveTessellate((p+q)/2,(q+r)/2,(r+p)/2);

• else if (tessPQ and tessQR)
– AdaptiveTessellate(p,(p+q)/2,r);
– AdaptiveTessellate((p+q)/2,(q+r)/2,r);
– AdaptiveTessellate((p+q)/2,q,(q+r)/2);

• else if (tessPQ)
– AdaptiveTessellate(p,(p+q)/2,r);
– AdaptiveTessellate(q,r,(p+q)/2);

• else if (not triTessEnough(p,q,r))
- AdaptiveTessellate((p+q+r)/3,p,q);
- AdaptiveTessellate((p+q+r)/3,q,r);
- AdaptiveTessellate((p+q+r)/3,r,p);

end;

curveTessEnough

• Say you are to judge whether ab needs tessellation
• You can compute the midpoint c, and compute the curve’s

distance l from d, the midpoint of ab
• Check if l/||a-b|| is under a threshold
• Can do something similar for triTessEnough

– Sample at the mass center and calculate its distance from
the triangle

curveTessEnough
• Say you are to judge whether ab needs

tessellation
• You can compute the midpoint c, and compute

the curve’s distance l from d, the midpoint of ab
• Check if l/||a-b|| is under a threshold
• Can do something similar for triTessEnough

– Sample at the mass center and calculate its distance
from the triangle

a b

c

d

On-the-fly tessellation

• In many cases, it is preferred to tessellate on-the-fly
• The size of the data can be kept small
• Tessellation is a highly parallel process

– Can make use of the GPU
• The shape may deform in real-time

On-the-fly tessellation

• So, say in a dynamic environment, what are the factors
that we need to take into account when doing the
tessellation?

– in addition to curvature?

Other factors?

Other factors?

Other factors?

Other factors to evaluate

• Inside the view frustum
• Front facing
• Occupying a large area in screen space
• Close to the silhouette of the object
• Illuminated by a significant amount of specular lighting

Summary

• Hermite, Bezier, B-Spline curves
• Bicubic patches
• Tessellation

– Triangulation of parametric surfaces
– On-the-fly tessellation

References

• Shirley Chapter 15 (Curves)
• Foley et al. Chapter 11, section 11.2 up to and including

11.2.3
• Foley at al., Chapter 11, sections 11.2.9, 11.2.10, 11.3 and

11.5.
• Akenine-Möller 13.6

Links

• http://www.rose-hulman.edu/~finn/CCLI/Applets/
CubicHermiteApplet.html

• http://www.rose-hulman.edu/~finn/CCLI/Applets/
BezierBernsteinApplet.html

• http://www.rose-hulman.edu/~finn/CCLI/Applets/
BSplineApplet.html

• http://www.personal.psu.edu/dpl14/java/
parametricequations/beziersurfaces/index.html

http://www.rose-hulman.edu/~finn/CCLI/Applets/CubicHermiteApplet.html
http://www.rose-hulman.edu/~finn/CCLI/Applets/BezierBernsteinApplet.html
http://www.rose-hulman.edu/~finn/CCLI/Applets/BSplineApplet.html
http://www.personal.psu.edu/dpl14/java/parametricequations/beziersurfaces/index.html

