
Computer Graphics 14 - Global illumination 1

Tom Thorne

Slides courtesy of Taku Komura

www.inf.ed.ac.uk/teaching/courses/cg

Overview

• Global illumination and light transport
• Monte-Carlo integration
• Monte-Carlo Ray Tracing
–Path Tracing
–Bidirectional Path Tracing

• Photon Mapping

*

Colour bleeding

Caustics

Light transport notations

• It is useful to be able to describe the path that light takes
through a scene:

• L light source

• E the eye

• S specular reflection or refraction

• D diffuse reflection

Light transport notations

• Regular expressions

• (k)+ : one or more of event k

• (k)* : zero or more of event k

• (k)? : zero or one of event k

• (k|k’) : event k or k’

Examples

LDDE LSDE

Ray Tracing: review

• Shadow ray, reflection ray,
etc.

• We calculate local
illumination at diffuse
surfaces using the direct
lighting

• We do not know where the
indirect (ambient) light
illuminating diffuse surfaces
comes from

Indirect lighting by ray-tracing

•Caustics and colour bleeding are produced by indirect light –
how can we simulate such effects in the ray tracing framework?

 LSDE LSDE LDDE

Rendering equation

L

o

(x , Ê
o

) = L

e

(x , Ê
o

) +
⁄

⌦
L

i

(x , Ê
i

)f
r

(x , Ê
i

, Ê
o

)(Ê
i

· n
x

)dÊ
i

I
L

o

(x , Ê
o

) outgoing radiance at

point x in direction Ê
o

I
L

e

emitted radiance

I
L

i

(x , Ê
i

) incoming radiance

from direction Ê
i

I
f

r

is the Bidirectional

Reflectance Distribution

Function (BRDF) of the

surface

I n
x

is the surface normal at

point x

I ⌦ is the hemisphere of

incoming directions at point x

ω

x

n

ωo i

Monte Carlo integration
To estimate an integral for some function f ,

I =
⁄

⌦
f (x)dx ,

we can generate N uniform random samples within ⌦, ›1, . . . , ›
N

and then approximate I as:

I ¥ V

1

N

ÿ

i

f (›
i

),

where V =
s
⌦ dx . Then

lim

NæŒ
V

1

N

Nÿ

i=1
f (›

i

) = I.

Monte Carlo integration example

For the region

D = (≠1 Æ x Æ 1, ≠1 Æ y Æ 1),
we define the function f (x , y) :

I
f (x , y) =I

1 if x

2 + y

2 Æ 1

0 otherwise

I
s

D

f (x , y)dxdy = fi

I fi ¥ 4

1
N

q
i

f (x
i

, y

i

)

Two ways to simulate indirect light

• Launch tracing rays in random directions at diffuse surfaces:
Path tracing

• Shoot rays that represent the path of light from the light
source: Bidirectional Path Tracing, Photon Mapping

Path Tracing
• An enhancement of the ordinary ray-tracing scheme
• When hitting a diffuse surface, pick one direction at random,

and find the colour of the incoming light
• Trace many paths per pixel (100-10000 per pixel)
• by Kajiya, SIGGRAPH 86

*

Original Ray Tracing Algorithm

•Trace (ray)
–Find the intersection of the ray and the scene
–Compute the shadow ray : Color=Color_ambient
–Do the local illumination : Color += Color_local (not shadowed)
–If specular compute the reflection vector R
•Color += Trace(R)

–If refractive compute the refractive vector T
•Color += Trace(T)

Path Tracing Algorithm

•Trace (ray)
–Find the intersection of the ray and the scene
–Compute the shadow ray : Color=Color_ambient
–Do the local illumination : Color += Color_local (not shadowed)
–If specular compute the reflection vector R
•Color += Trace(R)

–If refractive compute the refractive vector T
•Color += Trace(T)

–Else if diffuse compute a
 random vector R’

•Color += Trace(R’)

Path tracing: problems

• Variance in the pixel colours, appearing as noise
• Need many samples for precise results
–Requires 1000~10000 samples per pixel for good results

10 paths/pixel 100 paths/pixel 1000 paths/pixel
*

Path tracing: problems

• Some lights are difficult to reach from the camera - such as
those produced by spot lights

• For such lights, we cannot simulate indirect light well
• Results in a very dim image with high variance

*

Why? Shadow rays are always occluded

• For the pixel to be lit, the path must be lucky enough to
reach the light source

 Point light Spot light

*

Bidirectional path tracing

• Compute a light path y0,y1,…,yn
• Compute an eye path x0,x1,…,xm
• The colour of the fragment at x1 is
–The amount of light reaching x1 from y0,…,yn and
reflecting towards x0 plus
–The amount of light reaching x1 from x2 and reflecting
towards x0

Comparison

Benefits of bidirectional method

• Caustics
• Easier to produce by tracing from the light source

• When the light sources are not easy to reach from the eye

Metropolis-Hastings algorithm

If we want to sample from some probability density function f (x),
we can generate a Markov Chain whose stationary distribution is

f (x) using the following algorithm:

for i = 1 . . . N do

Generate x

Õ ≥ q(x æ ·);
Generate t ≥ Uniform(0, 1);

a Ω min

1
1, f (x Õ)q(x Õæx)

f (x)q(xæx

Õ)

2
;

if t < a then

x Ω x

Õ
;

end

end

where q(x æ x

Õ) is a proposal distribution that generates random

moves from the current state of the chain.

Metropolis light transport

• Bidirectional mutation:

• Delete a subpath and
sample a new one

• Perturbation:

• Move intersection points
within a subpath

• If a proposal is not valid,
reject immediately Top: Bidirectional path tracing, Bottom: Metropolis

light transport. Same computation time as path
tracing.

Summary for Monte Carlo Ray Tracing

• An approach that simulates the light reflection at diffuse
surfaces

• Can simulate indirect lighting
• Results are subject to variance
• Requires a lot of samples per pixel to reduce the noise
• Bidirectional methods can reduce the noise

*

Overview

• Global illumination and light transport
• Monte-Carlo integration
• Monte-Carlo Ray Tracing
–Path Tracing
–Bidirectional Path Tracing

• Photon Mapping

*

Photon Mapping

• A fast, global illumination algorithm based on Monte-Carlo
method

• A stochastic approach that estimates the radiance from a
limited number of samples

http://www.youtube.com/watch?
v=wqWRVcsIcAQ

Photon Mapping

•A two pass global illumination algorithm
– First Pass - photon tracing:

• Casting photons from the light source
• Storing photon positions in the “photon map”,

–Second Pass – rendering (radiance estimate):
• the shading of pixels is estimated from the photon map

Photon emission

• A photon’s life begins at the light source.
• Different types of light sources
• Brighter lights emit more photons

Photon scattering

• Emitted photons are scattered through a scene and are
eventually absorbed or lost

• When a photon hits a surface we can decide how much
of its energy is absorbed, reflected and refracted based
on the surface’s material properties

What happens when photons hit surfaces?

•Photons are reflected or absorbed. There are two ways to
determine this:
★ Attenuate the power and reflect the photon
- For arbitrary BRDFs

★ Use Russian Roulette techniques
- Decide stochastically whether the photon is reflected or

absorbed based on the probability of reflection, and do not
attenuate power if it is reflected.

Russian Roulette

• If the surface is diffuse and specular, a Monte Carlo
technique called Russian Roulette is used to
probabilistically decide whether photons are reflected,
refracted or absorbed.

• Produce a random number between 0 and 1
• Determine whether to transmit, absorb or reflect in a

specular or diffusive manner, according to the value

Probability of reflection and absorption

• Probability of reflection

• Probability of diffuse reflection

• Probability of specular reflection

Diffuse and specular reflection

• If the photon is to make a diffuse reflection, randomly
determine the direction

• If the photon is to make a specular reflection, reflect in the
mirror direction

Power attenuation

• The colour of the light must change after specular/diffuse
reflection

• This is essential for producing effects like colour bleeding

Power after reflectance

The power after reflection �
ref

for incident photon with power �
i

is

Specular reflection:

I �
ref ,r =

�
i,r s

r

P

s

I �
ref ,g = �

i,g s

g

P

s

I �
ref ,b =

�
i,bs

b

P

s

Di�use reflection:

I �
ref ,r =

�
i,r d

r

P

d

I �
ref ,g = �

i,g d

g

P

d

I �
ref ,b =

�
i,bd

b

P

d

Photon Map

•When a photon makes a diffuse bounce, or is absorbed at the
surface, the ray intersection is stored in memory
–3D coordinates on the surface
–Color intensity
–Incident direction

•The data structure is called Photon Map
•The photon data is not recorded for specular reflections

Second Pass – Rendering

• Finally, a traditional ray tracing procedure is performed by
shooting rays from the camera

• At the location the ray hits the scene, a sphere is created
and enlarged until it includes N photons

Radiance Estimation
• The radiance estimate can

be written by the following
equation

Radiance Estimation

Radiance Estimation

Radiance Estimation

Data structure for photon data

• We need an efficient data
structure for retrieving
photon maps when
colouring the pixels
– KD-tree
– Spatial Hash

Storing photons: kd-tree

• An efficient hierarchical data
structure for saving spatial data

• Procedure to produce it:
– divide the samples at the median

along current axis (e.g. x,y or z)
– The median sample becomes the

parent node, and the samples on
either side become the child
nodes

– Further subdivide the child trees
on the next axis (rotating
through x,y,z)

• Can efficiently find the neighbours
when rendering the scene

Query for N-nearest neighbouring photons

• Given a point X, we traverse the
tree to find the nearest N points to
X

• Start from the root, check if the
bounding circle is totally within one
side or not

• If it is, then you do not have to
search the other side

Query for N-nearest neighbouring photons

• If the photon is within bounding
volume, you add it into the heap

• Descend to the children (only if
they are within the bounding
distance)

• The heap is sorted so that the
farthest photon is on the top.

• Only the top N photons are kept
in the heap.

Storing photons: spacial hashing

• A uniform 3D grid based hashing system
• Create a hash function that maps each grid region to a list

that stores the photons in that region
• Scan the photons in the list to find those close to the sample

point

Nearest neighbour search
• Decide the maximum radius of search
• Examine the distance between the sample point and the

photons in the grid
• Gradually increase the radius, search in all the reachable grids

until we reach the photon count
• Suitable for hardware implementation
• “Photon Mapping on Programmable Graphics Hardware”,

Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
Conference on Graphics Hardware, pp. 41-50, 2003

Precision

•The precision of the final results depends on
– the number of photons emitted
– the number of photons counted for calculating the radiance

□ 10000 photons and 50 samples(left), and 500000 photons and 500
samples (right)

Photon mapping: 250000 photons, 15 seconds Path tracing

Summary

•Monte Carlo Ray Tracing
–Accurate but requires a lot of samples per pixel
–Suffers from noise which is due to variance
–Bidirectional method can reduce the variance

•Photon Mapping
–A stochastic approach that estimates the radiance from a limited
number of photons
–Requires less samples compared to path tracing

References

★Shirley Chapter 24 (Global illumination)

★A Practical Guide to Global Illumination using Photon Maps
– Siggraph 2000 Course 8
– http://graphics.stanford.edu/courses/cs348b-01/course8.pdf

• http://graphics.stanford.edu/papers/metro/

• Realistic Image Synthesis Using Photon Mapping by Henrik
Wann Jensen, AK Peters, 2001.

• Global Illumination using Photon Maps (Rendering Techniques
‘96) Henrik Wann Jensen (http://graphics.ucsd.edu/~henrik/)

http://graphics.stanford.edu/courses/cs348b-01/course8.pdf
http://graphics.stanford.edu/papers/metro/
http://graphics.ucsd.edu/~henrik/

