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Overview

• Global illumination and light transport 
• Monte-Carlo integration 
• Monte-Carlo Ray Tracing 
–Path Tracing 
–Bidirectional Path Tracing  

• Photon Mapping

*



Colour bleeding



Caustics



Light transport notations

• It is useful to be able to describe the path that light takes 
through a scene: 

• L light source 

• E the eye 

• S specular reflection or refraction 

• D diffuse reflection



Light transport notations

• Regular expressions 

• (k)+ : one or more of event k 

• (k)* : zero or more of event k 

• (k)? : zero or one of event k 

• (k|k’) : event k or k’



Examples

LDDE                                 LSDE



Ray Tracing: review 

• Shadow ray, reflection ray, 
etc. 

• We calculate local 
illumination at diffuse 
surfaces using the direct 
lighting  

• We do not know where the 
indirect (ambient) light 
illuminating diffuse surfaces 
comes from



Indirect lighting by ray-tracing

•Caustics and colour bleeding are produced by indirect light – 
how can we simulate such effects in the ray tracing framework? 

  LSDE                       LSDE                  LDDE



Rendering equation
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Monte Carlo integration
To estimate an integral for some function f ,

I =
⁄

⌦
f (x)dx ,

we can generate N uniform random samples within ⌦, ›1, . . . , ›
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Monte Carlo integration example

For the region

D = (≠1 Æ x Æ 1, ≠1 Æ y Æ 1),
we define the function f (x , y) :
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Two ways to simulate indirect light

• Launch tracing rays in random directions at diffuse surfaces:  
Path tracing  

• Shoot rays that represent the path of light from the light 
source: Bidirectional Path Tracing, Photon Mapping 



Path Tracing
• An enhancement of the ordinary ray-tracing scheme 
• When hitting a diffuse surface, pick one direction at random, 

and find the colour of the incoming light 
• Trace many paths per pixel  (100-10000 per pixel) 
• by Kajiya, SIGGRAPH 86

*



Original Ray Tracing Algorithm

•Trace (ray) 
–Find the intersection of the ray and the scene 
–Compute the shadow ray : Color=Color_ambient 
–Do the local illumination : Color += Color_local (not shadowed) 
–If specular compute the reflection vector R 
•Color += Trace(R) 

–If refractive compute the refractive vector T 
•Color += Trace(T)



Path Tracing Algorithm

•Trace (ray) 
–Find the intersection of the ray and the scene 
–Compute the shadow ray : Color=Color_ambient 
–Do the local illumination : Color += Color_local (not shadowed) 
–If specular compute the reflection vector R 
•Color += Trace(R) 

–If refractive compute the refractive vector T 
•Color += Trace(T) 

–Else if diffuse compute a  
     random vector R’ 

•Color += Trace(R’)



Path tracing: problems

• Variance in the pixel colours, appearing as noise 
• Need many samples for precise results 
–Requires 1000~10000 samples per pixel for good results

  

10 paths/pixel    100 paths/pixel      1000 paths/pixel 
*



Path tracing: problems

• Some lights are difficult to reach from the camera  - such as 
those produced by spot lights 

• For such lights, we cannot simulate indirect light well 
• Results in a very dim image with high variance 

*



Why? Shadow rays are always occluded 

• For the pixel to be lit, the path must be lucky enough to 
reach the light source

   Point light                         Spot light                              

*



Bidirectional path tracing

• Compute a light path y0,y1,…,yn 
• Compute an eye path x0,x1,…,xm 
• The colour of the fragment at x1 is  
–The amount of light reaching x1 from y0,…,yn and 
reflecting towards x0 plus 
–The amount of light reaching x1 from x2 and reflecting 
towards x0



Comparison



Benefits of bidirectional method

• Caustics  
• Easier to produce by tracing from the light source  

• When the light sources are not easy to reach from the eye 



Metropolis-Hastings algorithm

If we want to sample from some probability density function f (x),
we can generate a Markov Chain whose stationary distribution is

f (x) using the following algorithm:

for i = 1 . . . N do

Generate x

Õ ≥ q(x æ ·);
Generate t ≥ Uniform(0, 1);

a Ω min

1
1, f (x Õ)q(x Õæx)

f (x)q(xæx

Õ)

2
;

if t < a then

x Ω x

Õ
;

end

end

where q(x æ x

Õ) is a proposal distribution that generates random

moves from the current state of the chain.



Metropolis light transport

• Bidirectional mutation: 

• Delete a subpath and 
sample a new one 

• Perturbation: 

• Move intersection points 
within a subpath 

• If a proposal is not valid, 
reject immediately Top: Bidirectional path tracing, Bottom: Metropolis 

light transport. Same computation time as path 
tracing.



Summary for Monte Carlo Ray Tracing 

• An approach that simulates the light reflection at diffuse 
surfaces 

• Can simulate indirect lighting 
• Results are subject to variance  
• Requires a lot of samples per pixel to reduce the noise 
• Bidirectional methods can reduce the noise

*



Overview

• Global illumination and light transport 
• Monte-Carlo integration 
• Monte-Carlo Ray Tracing 
–Path Tracing 
–Bidirectional Path Tracing  

• Photon Mapping

*



Photon Mapping

• A fast, global illumination algorithm based on Monte-Carlo 
method 

• A stochastic approach that estimates the radiance from a 
limited number of samples 

http://www.youtube.com/watch?
v=wqWRVcsIcAQ



Photon Mapping

•A two pass global illumination algorithm 
– First Pass - photon tracing: 

• Casting photons from the light source 
• Storing photon positions in the “photon map”,  

–Second Pass – rendering (radiance estimate): 
• the shading of pixels is estimated from the photon map



Photon emission

• A photon’s life begins at the light source.   
• Different types of light sources  
• Brighter lights emit more photons 



Photon scattering

• Emitted photons are scattered through a scene and are 
eventually absorbed or lost 

• When a photon hits a surface we can decide how much 
of its energy is absorbed, reflected and refracted based 
on the surface’s material properties 



What happens when photons hit surfaces?

•Photons are reflected or absorbed. There are two ways to 
determine this: 
★ Attenuate the power and reflect the photon 
- For arbitrary BRDFs 

★ Use Russian Roulette techniques 
- Decide stochastically whether the photon is reflected or 

absorbed based on the probability of reflection, and do not 
attenuate power if it is reflected.



Russian Roulette 

• If the surface is diffuse and specular, a Monte Carlo 
technique called Russian Roulette is used to 
probabilistically decide whether photons are reflected, 
refracted or absorbed.  

• Produce a random number between 0 and 1  
• Determine whether to transmit, absorb or reflect in a 

specular or diffusive manner, according to the value



Probability of reflection and absorption

• Probability of reflection 

• Probability of diffuse reflection 

• Probability of specular reflection



Diffuse and specular reflection

• If the photon is to make a diffuse reflection, randomly 
determine the direction 

• If the photon is to make a specular reflection, reflect in the 
mirror direction



Power attenuation 

• The colour of the light must change after specular/diffuse 
reflection 

• This is essential for producing effects like colour bleeding



Power after reflectance
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Photon Map

•When a photon makes a diffuse bounce, or is absorbed at the 
surface, the ray intersection is stored in memory  
–3D coordinates on the surface 
–Color intensity 
–Incident direction 

•The data structure is called Photon Map 
•The photon data is not recorded for specular reflections



Second Pass – Rendering

• Finally, a traditional ray tracing procedure is performed by 
shooting rays from the camera 

• At the location the ray hits the scene, a sphere is created 
and enlarged until it includes N photons



Radiance Estimation 
• The radiance estimate can 

be written by the following 
equation  



Radiance Estimation 



Radiance Estimation 



Radiance Estimation 



Data structure for photon data

• We need an efficient data 
structure for  retrieving 
photon maps when 
colouring the pixels 
– KD-tree  
– Spatial Hash 



Storing photons: kd-tree

• An efficient hierarchical data 
structure for saving spatial data 

• Procedure to produce it:  
– divide the samples at the median 

along current axis (e.g. x,y or z) 
– The median sample becomes the 

parent node, and the samples on 
either side become the child 
nodes  

– Further subdivide the child trees 
on the next axis (rotating 
through x,y,z) 

• Can efficiently find the neighbours 
when rendering the scene



Query for N-nearest neighbouring photons

• Given a point X, we traverse the 
tree to find the nearest N points to 
X 

• Start from the root, check if the 
bounding circle is totally within one 
side or not 

• If it is, then you do not have to 
search the other side 

 



Query for N-nearest neighbouring photons

• If the photon is within bounding 
volume, you add it into the heap  

• Descend to the children (only if 
they are within the bounding 
distance) 

• The heap is sorted so that the 
farthest photon is on the top. 

• Only the top N photons are kept 
in the heap.



Storing photons: spacial hashing

• A uniform 3D grid based hashing system 
• Create a hash function that maps each grid region to a list 

that stores the photons in that region 
• Scan the photons in the list to find those close to the sample 

point



Nearest neighbour search
• Decide the maximum radius of search  
• Examine the distance between the sample point and the 

photons in the grid  
• Gradually increase the radius, search in all the reachable grids 

until we reach the photon count 
• Suitable for hardware implementation 
• “Photon Mapping on Programmable Graphics Hardware”, 

Proceedings of the ACM SIGGRAPH/EUROGRAPHICS 
Conference on Graphics Hardware, pp. 41-50, 2003



Precision

•The precision of the final results depends on  
– the number of photons emitted 
– the number of photons counted for calculating the radiance



□ 10000 photons and 50 samples(left), and 500000 photons and 500 
samples (right)



Photon mapping: 250000 photons, 15 seconds Path tracing



Summary

•Monte Carlo Ray Tracing 
–Accurate but requires a lot of samples per pixel 
–Suffers from noise which is due to variance 
–Bidirectional method can reduce the variance 

•Photon Mapping 
–A stochastic approach that estimates the radiance from a limited 
number of photons 
–Requires less samples compared to path tracing 
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