
Computer Graphics 13 - Hidden surface removal
and transparency

Tom Thorne

Slides courtesy of Taku Komura

www.inf.ed.ac.uk/teaching/courses/cg

Overview

• Hidden Surface removal

• Painter’s algorithm

• Z-buffer

• BSP tree

• Portal culling

• Back face culling

• Transparency

• Alpha blending

• Screen door transparency

Why hidden surface removal

• Rendering correctly requires correct visibility calculations

• When multiple opaque polygons cover a space on the screen,
only the closest one is visible

Incorrect visibility Correct visibility

Painter’s algorithm

• Draw surfaces in back to front order, with nearer polygons
‘painting’ over farther ones

• Need to find the order to draw objects in

Painter’s algorithm

• Main issue is determining the
order

• Doesn’t always work

Painter’s algorithm

• Another problem case

• Need to segment the triangles
so that they can be sorted

Z-buffer

• An image-based method applied during rasterisation

• Standard approach used in graphics hardware and libraries

• Easy to implement in hardware

• By Wolfgang Straßer in 1974

Z-buffer

• Advantages:

• Simple to implement in hardware

• Memory is relatively cheap

• Works with any primitives

• Unlimited complexity

• No need to sort objects or calculate intersections

• Disadvantages:

• Wasted time drawing hidden objects

• Z-precision errors (aliasing)

Z-buffer performance

• Memory overhead O(1)

• Visibility O(n) (n = number of polygons)

• Might need to be combined with other culling methods to
reduce complexity

Rendering complex scenes

• Don’t want to waste resources rendering triangles that don’t
contribute to the final image

• Drawing each triangle takes CPU/GPU cycles to calculate
illumination etc

*

Rendering complex scenes

• Sort polygons according to depth and only draw those close
to the viewer

• BSP trees, portal culling

*

BSP trees

• Binary space partitioning tree

• Represents the scene with a tree

• Scene is drawn by traversing the tree

• Suitable for rendering static scenes

BSP trees

• Splitting schemes:

• Polygon aligned

• Axis aligned

• k-d trees

• Quadtrees, octrees

BSP trees

1. Choose polygon arbitrarily
2. Divide scene into front

(relative to normal) and
back half-spaces.

3. Split any polygon lying on
both sides.

4. Choose a polygon from each
side – split scene again.

5. Recursively divide each side
until each node contains

only 1 polygon.

3
41

2

5

View of scene from above

BSP trees

3

3

4
1

2

5
5a

5b

1
2
5a

4
5b

backfront

1. Choose polygon arbitrarily
2. Divide scene into front

(relative to normal) and
back half-spaces.

3. Split any polygon lying on
both sides.

4. Choose a polygon from each
side – split scene again.

5. Recursively divide each side
until each node contains

only 1 polygon.

BSP trees

3

3

41

2

5
5a

5b

4
5b

backfront

2

15a

front

1. Choose polygon arbitrarily
2. Divide scene into front

(relative to normal) and
back half-spaces.

3. Split any polygon lying on
both sides.

4. Choose a polygon from
each side – split scene

again.
5. Recursively divide each side

until each node contains
only 1 polygon.

BSP trees

3

3

41

2

5

5a
5b

backfront

2

15a

front

5b

4

1. Choose polygon arbitrarily
2. Divide scene into front

(relative to normal) and
back half-spaces.

3. Split any polygon lying on
both sides.

4. Choose a polygon from each
side – split scene again.

5. Recursively divide each
side until each node

contains only 1 polygon.

Displaying a BSP tree

• The tree can be traversed to yield an ordering of the
polygons for an arbitrary viewpoint

• Back to front using the painter’s algorithm

• Front to back - more efficient

Displaying a BSP tree: back to front

● Start at root polygon.
○ If viewer is in front half-space, draw polygons behind root first,

then the root polygon, then polygons in front.
○ If viewer is in back half-space, draw polygons in front of root

first, then the root polygon, then polygons behind.
○ Recursively descend the tree.

● If eye is in rear half-space for a polygon can back face
cull.

● Always drawing the opposite side from the viewer first

In what order will the faces be drawn?

3

41

2

5
5a

5b

3 backfront

2

15a

front

5b

4

Displaying the BSP tree: front to back

• Back to front rendering will result in a lot of over-drawing

• Front to back traversal is more efficient

• Record which regions of the screen have been filled

• Finish when all regions are filled

Displaying the BSP tree: front to back

• Use the active edge table in a scanline algorithm

• Record pixels not filled in for each scanline

Lecture 9

BSP trees

• Requires a lot of computation to generate
the tree

• Need to produce a balanced tree

• Need to intersect polygons to split them

• Cheap to check visibility once the tree has
been set up

• Efficient when the scene doesn’t change
often

3

3
41

2

5

back

2
1

front

5
4 back

back

BSP trees

• Combine with Z-buffer

• Render static objects (front to back) with Z-buffer on

• Then draw dynamic objects

BSP tree visibility culling

• BSP trees can be used to cull
polygons that fall outside of
the viewing frustum

• If plane intersects frustum,
descend to both children

• If frustum on one side of
plane, cull objects on other
side of plane

• Also possible with octrees

Example architectural scenes

• Can have an enormous amount of occlusion

Portal culling
Model scene as a graph:
• Nodes: Cells (or rooms)
• Edges: Portals (or doors)

Graph gives us:
• Potentially visible set

1. Render the room
2. If portal to the next room is

visible, render the connected
room in the portal region

3. Repeat the process along the
scene graph

A

BC

D

E

F

G

A

B

DC E

Object space and image space classification

• Object space techniques - applied to mesh geometry:

• Painter’s algorithm BSP trees, portal culling

• Image space techniques - applied when pixels are drawn:

• Z-buffering

*

Back face culling

• We do not draw polygons
facing the other direction

• Test z component of surface
normals. If negative – cull,
since normal points away
from viewer.

• Or if N.V > 0 we are viewing
the back face so polygon is
obscured.

Hidden surface removal summary

• Z-buffer is easy to implement in hardware and is a standard
technique

• Need to combine Z-buffers with an object based approach
when there are many polygons - BSP trees, portal culling

• Front to back traversal reduces the cost

Overview

• Hidden Surface removal

• Painter’s algorithm

• Z-buffer

• BSP tree

• Portal culling

• Back face culling

• Transparency

• Alpha blending

• Screen door transparency

Transparency

• Sometimes we want to draw transparent
objects

• We blend the colour of the objects
visible at each pixel

• Alpha blending

• Screen-door transparency

*

Alpha blending

• Alpha values describes the opacity of an object

• 1 means fully opaque

• 0 means fully transparent

*

α=1.0 α=0.5 α=0.2

Sorting by depth

• The depth and colour of all fragments that will be projected
onto the same pixel is stored in a list

• Blend the colours from back to front

Colour blending

• Colours are blended as follows:

C
o

= ↵C
s

+ (1� ↵)C
d

C
o

= New pixel colour

C
s

= Transparent object colour

C
d

= Current pixel colour

Sorting

• Sorting is expensive (BSP tree)

• Sorting per pixel is very expensive

• A faster solution - screen door transparency

Screen-door transparency

• The object is solid but is drawn with holes using a stipple
(checkboard) pattern like a screen-door

• The ratio of drawn pixels equals the alpha value

• No need to perform sorting, objects can be drawn in any
order

• Z-buffer can handle the overlaps of translucent surfaces

alpha = 0.25

Screen-door transparency

• With a transparent object over another, the transparent
object can block everything behind it when the same fixed
stipple patterns are used

Screen-door transparency

• Stipple patterns need to be set in screen space, otherwise
aliasing occurs

http://www.youtube.com/watch?
v=gMsmJfiApCs

http://www.youtube.com/watch?v=gMsmJfiApCs
http://youtube.com/v/gMsmJfiApCs

Stochastic transparency

• Using multisampling, sub-pixels are drawn and the pixel
colour is computed by averaging their colour

• Uses a random sub-pixel stipple pattern

http://youtube.com/v/4oLeQTLf50Y
http://youtube.com/v/mMjN2_klv8k

Stochastic transparency

• No sorting needed

• Final colour of a pixel is calculated by averaging sub-pixel
colours

References

• Shirley Chapter 12.4 (BSP trees for visibility)

• Akenine-Möller Chapter 14.1.2 (BSP trees)

• Shirley Chapter 3.4 (Alpha compositing)

• Akenine-Möller Chapter 5.7 (Transparency, Alpha and
Compositing)

• Foley, Chapter 15.4, 15.5.1, 15.5.2

• http://research.nvidia.com/publication/stochastic-
transparency

http://research.nvidia.com/publication/stochastic-transparency

