Computer Graphics 13 - Hidden surface removal
and transparency

om T horne

Slides courtesy of Taku Komura
www.inf.ed.ac.uk/teaching/courses/cg



Overview

e Hidden Surface removal
e Painter's algorithm
o /-buffer
e BSP tree
e Portal culling
e Back face culling
e Transparency

e Alpha blending

e Screen door transparency



Why hidden surface removal

e Rendering correctly requires correct visibility calculations

e When multiple opaque polygons cover a space on the screen,
only the closest one is visible

Incorrect visibility Correct visibility



Painter's algorithm

e Draw surfaces in back to front order, with nearer polygons
‘painting’ over farther ones

e Need to find the order to draw objects in




Painter's algorithm

e Main issue is determining the
order

e Doesn't always work




Painter's algorithm

e Another problem case

e Need to segment the triangles
so that they can be sorted




/-buftfer

e An image-based method applied during rasterisation
e Standard approach used in graphics hardware and libraries

o Easy to implement in hardware

o« By Wolfgang Straler in 1974



/-buffer

e Advantages:

e Simple to implement in hardware

e Memory is relatively cheap

e Works with any primitives

e Unlimited complexity

e No need to sort objects or calculate intersections
e Disadvantages:

e Wasted time drawing hidden objects

e Z-precision errors (aliasing)






/-buffer performance

e Memory overhead O(1)
e Visibility O(n) (n = number of polygons)

e Might need to be combined with other culling methods to
reduce complexity



Rendering complex scenes

e Don't want to waste resources rendering triangles that don't
contribute to the final image

e Drawing each triangle takes CPU/GPU cycles to calculate
illumination etc




Rendering complex scenes

e Sort polygons according to depth and only draw those close

to the viewer

e BSP trees, portal culling

o0
"B ()35 -
0 o/ 0 y
0 - o .
MO
w QO o e oS T
8 Q0110 plUDjo | — -}
: o o - o
. I oD - — i O
&)
. O 0




BSP trees

e Binary space partitioning tree
e Represents the scene with a tree
e Scene is drawn by traversing the tree

e Suitable for rendering static scenes




BSP trees

e Splitting schemes:

e Polygon aligned

e Axis aligned
e k-d trees

e (Quadtrees, octrees




BSP trees

Choose polygon arbitrarily

Divide scene into front

(relative to normal) and \4
back half-spaces. 2\<

Split any polygon lying on 7/
both sides. 1 .

4
Choose a polygon from each /( /r

side — split scene again.

Recursively divide each side

until each node contains View of scene from above

only 1 polygon.



BSP trees

Choose polygon arbitrarily
Divide scene into front
(relative to normal) and

back half-spaces.

Split any polygon lying on

both sides.

Choose a polygon from each
side — split scene again.

Recursively divide each side p
. . 1

until each node contains 5 5b
only 1 polygon. o8




BSP trees

Choose polygon arbitrarily
Divide scene into front
(relative to normal) and

back half-spaces.

Split any polygon lying on

both sides.

Choose a polygon from

each side — split scene

again. front back
Recursively divide each side
ront 4

until each node contains : b 5b
only 1 polygon. @




BSP trees

Choose polygon arbitrarily
Divide scene into front
(relative to normal) and

back half-spaces.

Split any polygon lying on

both sides.
Choose a polygon from each

side — split scene again. front G back
Recursively divide each e
front 6

side until each node ‘ )/ b
contains only 1 polygon. @



Displaying a BSP tree

e The tree can be traversed to yield an ordering of the
polygons for an arbitrary viewpoint

o Back to front using the painter’s algorithm

e Front to back - more efficient



Displaying a BSP tree: back to front

e Start at root polygon.

o If viewer is in front half-space, draw polygons behind root first,

then the root polygon, then polygons in front.
If viewer is in back half-space, draw polygons in front of root

first, then the root polygon, then polygons behind.
o  Recursively descend the tree.

e If eye is in rear half-space for a polygon can back face
cull.

O

e Always drawing the opposite side from the viewer first



In what order will the faces be drawn?

traverse tree (bsp tree* tree, point eye)

location = tree->find location(eye);

if (tree->empty())

- .

L

- — - P

cion

AT

if(location > 0) // 1f eye 1n front of loc
traverse tree (tree->back, eye):;
display(tree->polygon list):
traverse tree(tree->front, eye):
v~

l1se if (location < 0) // eye behind loc

cion

AT

—_—

traverse tree(tree->front, eye):
display(tree->polygon 1list);
traverse tree (tree->back, eye);

1l witn partition

AT

eye coincident

L
(0
L

traverse tree (tree->front, eye);
traverse tree (tree->back, eye);



Displaying the BSP tree: front to back

e Back to front rendering will result in a lot of over-drawing
e Front to back traversal is more efficient
e Record which regions of the screen have been filled

e Finish when all regions are filled



Displaying the BSP tree: front to back

e Use the active edge table in a scanline algorithm

e Record pixels not filled in for each scanline

50

100

220

198

199

50

100 220




BSP trees

e Requires a lot of computation to generate
the tree

e Need to produce a balanced tree
e Need to intersect polygons to split them

e Cheap to check visibility once the tree has
been set up

o Efficient when the scene doesn't change
often




BSP trees

e Combine with Z-buffer
e Render static objects (front to back) with Z-buffer on

e Then draw dynamic objects



BSP tree visibility culling

e BSP trees can be used to cull
polygons that fall outside of
the viewing frustum

e If plane intersects frustum,
descend to both children

e |f frustum on one side of

plane, cull objects on other
side of plane

e Also possible with octrees



Example architectural scenes

¢ Can have an enormous amount of occlusion




Portal culling

Model scene as a graph:
* Nodes: Cells (or rooms)
*  Edges: Portals (or doors)

Graph gives us:
* Potentially visible set

1. Render the room
2. If portal to the next room is

visible, render the connected
room in the portal region e
3. Repeat the process along the @

scene graph @/@é



Object space and image space classification

e Object space techniques - applied to mesh geometry:
e Painter's algorithm BSP trees, portal culling

e Image space techniques - applied when pixels are drawn:

o /-buffering



Back face culling

 We do not draw polygons
facing the other direction

¢ Test z component of surface
normals. If negative — cull,
since normal points away
from viewer.

« Orif N.V > 0 we are viewing
the back face so polygon is

obscured.




Hidden surface removal summary

/-buffer is easy to implement in hardware and is a standard
technique

Need to combine Z-buffers with an object based approach
when there are many polygons - BSP trees, portal culling

e Front to back traversal reduces the cost



Overview

e Hidden Surface removal

e Painter’s algorithm

o Z-buffer

e BSP tree

e Portal culling

e Back face culling
e Transparency

e Alpha blending

e Screen door transparency



Transparency

e Sometimes we want to draw transparent
objects

e« We blend the colour of the objects
visible at each pixel

e Alpha blending

e Screen-door transparency




Alpha blending

e Alpha values describes the opacity of an object
e 1 means fully opaque

e 0 means fully transparent




Sorting by depth

e The depth and colour of all fragments that will be projected
onto the same pixel is stored in a list

e Blend the colours from back to front




Colour blending

e Colours are blended as follows:

Co =aCs+ (1 —a)Cy
C', = New pixel colour
(s = Transparent object colour

C'; = Current pixel colour




Sorting

e Sorting is expensive (BSP tree)
o Sorting per pixel is very expensive

o A faster solution - screen door transparency




Screen-door transparency

e The object is solid but is drawn with holes using a stipple
(checkboard) pattern like a screen-door

e The ratio of drawn pixels equals the alpha value

e No need to perform sorting, objects can be drawn in any
order

e /-buffer can handle the overlaps of translucent surfaces




alpha = 0.5




alpha = 0.2!




Screen-door transparency

o With a transparent object over another, the transparent
object can block everything behind it when the same fixed
stipple patterns are used




Screen-door transparency

e Stipple patterns need to be set in screen space, otherwise
aliasing occurs

o ——

http://www.youtube.com/watch?
v=gMsmJfiApCs

- - - e T, — -y ] 5% O
o e e S e S S R S SR
T

-E—J_.'_'f':_ ._-".-,"-;.'



http://www.youtube.com/watch?v=gMsmJfiApCs
http://youtube.com/v/gMsmJfiApCs

Stochastic transparency

e Using multisampling, sub-pixels are drawn and the pixel
colour is computed by averaging their colour

e Uses a random sub-pixel stipple pattern

N SHADOWSCHEME - _nON:
B ATPHAMODE™ """ AM SCREENDOOR AL.. |

B AAMO AW NONE™
¥ AM_DEPTHPEELING
AM_ALPHATOCOVERAGE
B SHAD  Am SCREENDOOR
AM_SCREENDOOR_ALPHACORR
AM_DEPTHSAMPLED



http://youtube.com/v/4oLeQTLf50Y
http://youtube.com/v/mMjN2_klv8k

Stochastic transparency

e No sorting needed

e Final colour of a pixel is calculated by averaging sub-pixel
colours

screen
pilixel

fragmentl fragment?2 fragment3

sub-pixel



References

e Shirley Chapter 12.4 (BSP trees for visibility)
e Akenine-Moller Chapter 14.1.2 (BSP trees)
e Shirley Chapter 3.4 (Alpha compositing)

o Akenine-Moller Chapter 5.7 (Transparency, Alpha and
Compositing)

e Foley, Chapter 15.4, 15.5.1, 15.5.2

e http://research.nvidia.com/publication/stochastic-

transparency


http://research.nvidia.com/publication/stochastic-transparency

