Computer Graphics 10 - Ray tracing

Tom Thorne

Slides courtesy of Taku Komura www.inf.ed.ac.uk/teaching/courses/cg

Overview

- Ray tracing overview
- Ray trees
- Intersections
 - Spheres
 - Planes
 - Polygons
- Bounding volumes
 - Bounding volume hierarchies

Ray tracing (Appel '68)

- One of the most popular methods used in 3D computer graphics to render an image
- Different from the rasterisation-based approach
- Good at simulating specular effects, producing shadows
- Also used as a function for other global illumination techniques

Ray tracing

• Tracing the path taken by a ray of light through the scene

 Rays are cast to each pixel. They are reflected, refracted, or absorbed whenever they intersect objects

Procedure

• Rays that miss the objects are coloured as the background

Procedure

• When a ray hits an object...

Procedure

- Check for shadowing:
 - Cast a shadow ray towards each light source

Shadow rays

- If shadow ray hits another object, only apply ambient lighting
- Otherwise perform local Phong illumination

Shadow rays

Reflected rays

• Also generate a reflected ray, and test for intersections with the scene

Reflected rays

 If the reflected ray intersects an object, apply local illumination at intersection point, and return result to original intersection point

Refracted rays

 If the object is transparent, calculate refracted ray based on Snell's law

$$T = rI + (w - k)n$$

$$r = \frac{n_1}{n_2}$$

$$w = -(I \cdot n)r$$

$$k = \sqrt{1 + (w - r)(w + r)}$$

Refracted rays

• As with reflection, calculate local illumination of intersection of refracted ray, and return to original intersection

Ray tracing outline

- Shadow ray
- Reflection ray
- Refraction ray

$$I = I_{local} + k_r R + k_t T$$

Ray Tree (Whitted '80)

- Reflection and refraction rays are recursively cast on hitting a surface
- Performed to some depth and then returned to the previous hits

 Ray tree of depth 1. Mirror and teapot are reflective but no reflected ray is cast

• Ray tree of depth 2. Reflection of mirror and teapot have no reflections on them!

• Ray tree of depth 3. Reflection of mirror on reflected teapot has no reflection.

• Ray tree of depth 4. No reflection on teapot in reflection of mirror on teapot in mirror.

• Ray tree of depth 5...

• Ray tree of depth 6...

• Ray tree of depth 7...

Ray trees on a specular surface

Compute the colour of each ray:

$$I = I_{local} + K_{r}R + K_{t}T$$

$$R = I'_{local} + K'_{r}R' + K''_{t}T'$$

$$R' = I''_{local} + K''_{r}R'' + K'''_{t}T''$$

$$\vdots$$

• In one single equation:

$$I = I_{local} + K_r(I'_{local} + K'_r(I''_{local} + K''_r(I'''_{local} + K'''_r(...)))$$

Stopping

- Need to decide when to stop:
 - When we hit a completely diffuse surface
 - On specular surfaces at some fixed depth
 - Once the product of coefficients falls below a threshold

$$I = I_{local} + K_r (I'_{local} + K'_r (I''_{local} + K''_r (I'''_{local} + K'''_r (...)))$$

$$K_r K'_r K''_r K'''_r \dots < threshold$$

Hall, R. A. and Greenberg D.P., "A Testbed for Realistic Image Synthesis", IEEE Computer Graphics and Applications, 3(8), Nov., 1983

Examples

Complexity?

- Ray tracing at a resolution of w by h, and N triangles, O(?)
- Rasterisation with V vertices and N triangles, O(?)

Overview

- Ray tracing overview
- Ray trees
- Intersections
 - Spheres
 - Planes
 - Polygons
- Bounding volumes
 - Bounding volume hierarchies

Parametric representation of rays

- Ray is a line from some origin e in direction d. E.g. starting
 at the camera in the direction of the pixel, or starting on the
 surface in the direction of reflection or refraction
- Given an object represented by an implicit surface we can find the value of t at which the ray intersects the object
- Knowing t at the intersection we can calculate the coordinates of the intersection

$$r(t) = e + td$$

Implicit representation of spheres

We can represent a sphere using an implicit equation of the form $f(\mathbf{p}) = 0$.

A sphere is defined by $(x - s_x)^2 + (y - s_y)^2 + (z - s_z)^2 = r^2$, so for a sphere with center at coordinates s and of radius r:

Ray/sphere intersection

To find the intersection of a ray with a sphere, we substitute $\mathbf{r}(t) = \mathbf{e} + t\mathbf{d}$ into the implicit equation for a sphere:

$$(\mathbf{e} + t\mathbf{d} - \mathbf{s}) \cdot (\mathbf{e} + t\mathbf{d} - \mathbf{s}) - r^2 = 0$$

 $(\mathbf{d} \cdot \mathbf{d})t^2 + 2\mathbf{d} \cdot (\mathbf{e} - \mathbf{s})t + (\mathbf{e} - \mathbf{s}) \cdot (\mathbf{e} - \mathbf{s}) - r^2 = 0$

This is a quadratic equation in t, e.g. $at^2 + bt + c = 0$, and so we can find the solutions for t using:

$$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Ray/sphere intersection

This gives us the solution for t as:

$$t = \frac{-2\mathbf{d} \cdot (\mathbf{e} - \mathbf{s}) \pm \sqrt{(2\mathbf{d} \cdot (\mathbf{e} - \mathbf{s}))^2 - 4(\mathbf{d} \cdot \mathbf{d})((\mathbf{e} - \mathbf{s}) \cdot (\mathbf{e} - \mathbf{s}) - r^2)}}{2(\mathbf{d} \cdot \mathbf{d})}$$

With the number of solutions determined by the value in the square root.

- ▶ If $b^2 4ac > 0$ there are two intersections of the ray with the sphere
- ▶ If $b^2 4ac = 0$ the ray grazes the sphere and there is a single intersection
- ▶ If $b^2 4ac < 0$ the ray misses the sphere completely.

$$r(t) = o + dt$$

Implicit representation of planes

A plane can be described by the implicit equation

$$(\boldsymbol{p}-\boldsymbol{s})\cdot\boldsymbol{n}=0$$

where **s** is a point on the plane, and **n** is the normal vector to the plane. Points **p** satisfying this equation lie on the plane. For points **a**, **b** on the plane:

$$\boldsymbol{n} = (\boldsymbol{a} - \boldsymbol{s}) \times (\boldsymbol{b} - \boldsymbol{s})$$

 $(\boldsymbol{p} - \boldsymbol{s}) \cdot ((\boldsymbol{a} - \boldsymbol{s}) \times (\boldsymbol{b} - \boldsymbol{s})) = 0$

Ray/plane intersections

To calculate the intersection of a ray with a plane we substitute the equation for the points on the ray into the implicit plane equation:

$$(\mathbf{e} + t\mathbf{d} - \mathbf{s}) \cdot \mathbf{n} = 0$$

$$(\mathbf{e} - \mathbf{s}) \cdot \mathbf{n} + t\mathbf{d} \cdot \mathbf{n} = 0$$

$$t = \frac{(\mathbf{s} - \mathbf{e}) \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}}$$

In the case where $\mathbf{d} \cdot \mathbf{n} = 0$ the ray is parallel to the plane, and so does not intersect it.

Ray/triangle intersection

First perform intersection with the plane:

$$t = \frac{(s - e) \cdot n}{d \cdot n}$$

Then test if the point r(t) = e + td lies within the triangle.

Projection onto primary planes

To make things simpler, we project the triangle onto one of the planes corresponding to a pair of axes (xy, yz or xz).

- We chose the plane on which the triangle has the largest projection, using the normal vector n.
- ► The largest component of *n* is dropped e.g. if |n_y| is the largest we project onto the xz plane, dropping the y coordinate.

Projection onto primary planes

After projection to a 2D plane we can test for a point being inside the triangle using barycentric coordinates:

$$\alpha = \frac{f_{P_1 P_2}(x, y)}{f_{P_1 P_2}(x_0, y_0)}$$

$$\beta = \frac{f_{P_2 P_0}(x, y)}{f_{P_2 P_0}(x_1, y_1)}$$

$$\gamma = \frac{f_{P_0 P_1}(x, y)}{f_{P_0 P_1}(x_2, y_2)},$$

where

$$f_{pq}(x,y) = (y_q - y_p)x - (x_q - x_p)y + x_qy_p - y_qx_p$$

Overview

- Ray tracing overview
- Ray trees
- Intersections
 - Spheres
 - Planes
 - Polygons
- Bounding volumes
 - Bounding volume hierarchies

Bounding volumes

- We want to reduce number of ray-object intersections to test
- Use bounding volumes:
 - Test for an intersection with bounding volume
 - Only test intersection with objects inside volume if we intersect the bounding volume
- Boxes, spheres

Hierarchical structures

- Enclose objects in hierarchical bounding volumes
- Octrees, KD-trees
- Bounding volume hierarchies

Bounding volume hierarchy

- Give each object a bounding volume
- The bounding volume does not partition
- The bounding volumes can overlap each other
- The volume higher in the hierarchy contains their children
- If a ray misses a bounding volume, no need to check for intersection with children
- If we intersect a bounding volume, check intersection with children

• Find bounding box of objects

- Find bounding box of objects
- Split into two groups

- Find bounding box of objects
- Split into two groups
- Recurse

- Find bounding box of objects
- Split into two groups
- Recurse

- Find bounding box of objects
- Split into two groups
- Recurse

- Find bounding box of objects
- Split into two groups
- Recurse

Where to split?

- At midpoint
- Sort and put half on each side

Computing intersections

```
intersect(node,ray,hits) {
   if( intersectp(node->bound,ray)
        if( leaf(node) )
            intersect(node->prims,ray,hits)
        else
            for each child
                inter sect(child,ray,hits)
}
```

Summary

- Simple but computationally expensive
- Easily includes reflection, refraction and shadows
- Calculating intersections is main bottleneck
- Reduce the number of intersection calculations using a bounding volume hierarchy

References

- Shirley Chapter 4 (Ray tracing)
- Shirley Chapter 12.3 (12.3.1,12.3.2) (Spatial Data Structures)
- Foley Chapter 15.10 (Visible-surface ray tracing), 16.11,16.12 (Global illumination, Recursive ray tracing)
- Akenine-Möller Chapter 16.6, 16.8 (Ray/Sphere intersection, Ray/Triangle intersection)

*