
Computer Graphics 10 - Ray tracing

Tom Thorne

Slides courtesy of Taku Komura

www.inf.ed.ac.uk/teaching/courses/cg

Overview

• Ray tracing overview

• Ray trees

• Intersections

• Spheres

• Planes

• Polygons

• Bounding volumes

• Bounding volume hierarchies

Ray tracing (Appel ’68)

• One of the most popular methods used in 3D computer
graphics to render an image
• Different from the rasterisation-based approach
• Good at simulating specular effects, producing shadows
• Also used as a function for other global illumination

techniques

*

Ray tracing

• Tracing the path taken by a ray of light through the scene

• Rays are cast to each pixel. They are reflected, refracted, or
absorbed whenever they intersect objects

*

Procedure

• Rays that miss the objects are coloured as the background

*

Procedure

• When a ray hits an object…

*

Procedure

• Check for shadowing:

• Cast a shadow ray towards each light source

Shadow rays

• If shadow ray hits another object, only apply ambient lighting

• Otherwise perform local Phong illumination

Shadow rays

*

Reflected rays

• Also generate a reflected ray, and test for intersections with the scene

Reflected rays

• If the reflected ray intersects an object, apply local
illumination at intersection point, and return result to original
intersection point

Refracted rays

• If the object is transparent, calculate refracted ray based on
Snell’s law

*

T = rI + (w � k)n

r =
n1

n2

w = �(I · n)r

k =
p

1 + (w � r)(w + r)

Refracted rays

• As with reflection, calculate local illumination of intersection
of refracted ray, and return to original intersection

*

Ray tracing outline

• Shadow ray

• Reflection ray

• Refraction ray

• Combine contributions from each ray:

*

I = I
local

+ k
r

R+ k
t

T

Ray Tree (Whitted ’80)

• Reflection and refraction rays are recursively cast on hitting a
surface

• Performed to some depth and then returned to the previous
hits

*

θ θ

α

Test scene

• Ray tree of depth 1. Mirror and teapot are reflective but no
reflected ray is cast

*

Test scene

• Ray tree of depth 2. Reflection of mirror and teapot have no
reflections on them!

*

Test scene

• Ray tree of depth 3. Reflection of mirror on reflected teapot
has no reflection.

*

Test scene

• Ray tree of depth 4. No reflection on teapot in reflection of
mirror on teapot in mirror.

*

Test scene

• Ray tree of depth 5…

*

Test scene

• Ray tree of depth 6…

*

Test scene

• Ray tree of depth 7…

*

Ray trees on a specular surface

• Compute the colour of each ray:

• In one single equation:

*

Stopping

• Need to decide when to stop:

• When we hit a completely diffuse surface

• On specular surfaces at some fixed depth

• Once the product of coefficients falls below a threshold

*Hall, R. A. and Greenberg D.P. , "A Testbed for Realistic Image Synthesis", IEEE
Computer Graphics and Applications, 3(8), Nov., 1983

Examples

Complexity?

• Ray tracing - at a resolution of w by h, and N triangles, O(?)

• Rasterisation - with V vertices and N triangles, O(?)

Overview

• Ray tracing overview

• Ray trees

• Intersections

• Spheres

• Planes

• Polygons

• Bounding volumes

• Bounding volume hierarchies

Parametric representation of rays

• Ray is a line from some origin e in direction d. E.g. starting
at the camera in the direction of the pixel, or starting on the
surface in the direction of reflection or refraction

• Given an object represented by an implicit surface we can find
the value of t at which the ray intersects the object

• Knowing t at the intersection we can calculate the
coordinates of the intersection

Ray equation

r(t) = e + td

Implicit representation of spheres

We can represent a sphere using an implicit equation of the form

f (p) = 0.

A sphere is defined by (x ≠ s

x

)2 + (y ≠ s

y

)2 + (z ≠ s

z

)2 = r

2
, so

for a sphere with center at coordinates s and of radius r:

(p ≠ s) · (p ≠ s) ≠ r

2 = 0

s

p

Ray/sphere intersection

To find the intersection of a ray with a sphere, we substitute

r(t) = e + td into the implicit equation for a sphere:

(e + td ≠ s) · (e + td ≠ s) ≠ r

2 = 0

(d · d)t2 + 2d · (e ≠ s)t + (e ≠ s) · (e ≠ s) ≠ r

2 = 0

This is a quadratic equation in t, e.g. at

2 + bt + c = 0, and so we

can find the solutions for t using:

t =
≠b ±

Ô
b

2 ≠ 4ac

2a

Ray/sphere intersection

This gives us the solution for t as:

t =
≠2d · (e ≠ s) ±

Ò
(2d · (e ≠ s))2 ≠ 4(d · d)((e ≠ s) · (e ≠ s) ≠ r

2)

2(d · d)

With the number of solutions determined by the value in the

square root.

I
If b

2 ≠ 4ac > 0 there are two intersections of the ray with the

sphere

I
If b

2 ≠ 4ac = 0 the ray grazes the sphere and there is a single

intersection

I
If b

2 ≠ 4ac < 0 the ray misses the sphere completely.

✐
✐

✐
✐

✐
✐

✐
✐

16.6. Ray/Sphere Intersection 739

Figure 16.5. The left image shows a ray that misses a sphere and consequently b2−c < 0.
The middle image shows a ray that intersects a sphere at two points (b2 − c > 0)
determined by the scalars t1 and t2. The right image illustrates the case where b2−c = 0,
which means that the two intersection points coincide.

The last step comes from the fact that d is assumed to be normalized,
i.e., d ·d = ||d||2 = 1. Not surprisingly, the resulting equation is a polyno-
mial of the second order, which means that if the ray intersects the sphere,
it does so at up to two points (see Figure 16.5). If the solutions to the
equation are imaginary, then the ray misses the sphere. If not, the two
solutions t1 and t2 can be inserted into the ray equation to compute the
intersection points on the sphere.

The resulting Equation 16.10 can be written as a quadratic equation:

t2 + 2tb + c = 0, (16.11)

where b = d · (o − c) and c = (o − c) · (o − c) − r2. The solutions of the
second-order equation are shown below:

t = −b ±
√

b2 − c. (16.12)

Note that if b2 − c < 0, then the ray misses the sphere and the in-
tersection can be rejected and calculations avoided (e.g., the square root
and some additions). If this test is passed, both t0 = −b −

√
b2 − c and

t1 = −b +
√

b2 − c can be computed. To find the smallest positive value of
t0 and t1, an additional comparison needs to be executed.

If these computations are instead viewed from a geometric point of view,
then better rejection tests can be discovered. The next subsection describes
such a routine.

For the other quadrics, e.g., the cylinder, ellipsoid, cone, and hyper-
boloid, the mathematical solutions to their intersection problems are almost
as straightforward as for the sphere. Sometimes, however, it is necessary
to bound a surface (for example, usually you do not want a cylinder to be
infinite, so caps must be added to its ends), which can add some complexity
to the code.

r(t) = o+ dt

Parametric representation of rays

• Ray is a line from some origin e in direction d. E.g. starting
at the camera in the direction of the pixel, or starting on the
surface in the direction of reflection or refraction

• We given an object represented by an implicit surface we can
find the value of t at which the ray intersects the object

• Knowing t at the intersection we can calculate the
coordinates of the intersection

Ray equation

r(t) = e + td

Implicit representation of planes
A plane can be described by the

implicit equation

(p ≠ s) · n = 0

where s is a point on the plane,

and n is the normal vector to the

plane. Points p satisfying this

equation lie on the plane.

For points a, b on the plane:

n = (a ≠ s) ◊ (b ≠ s)
(p ≠ s) · ((a ≠ s) ◊ (b ≠ s)) = 0

n

s

p
a

b

Ray/plane intersections

To calculate the intersection of a ray with a plane we substitute the

equation for the points on the ray into the implicit plane equation:

(e + td ≠ s) · n = 0

(e ≠ s) · n + td · n = 0

t =
(s ≠ e) · n

d · n

In the case where d · n = 0 the ray is parallel to the plane, and so

does not intersect it.

Ray/triangle intersection

First perform intersection with the plane:

t =
(s ≠ e) · n

d · n

Then test if the point r(t) = e + td lies within the triangle.

Projection onto primary planes

To make things simpler, we project the triangle onto one of the

planes corresponding to a pair of axes (xy , yz or xz).

I
We chose the plane on

which the triangle has the

largest projection, using the

normal vector n.

I
The largest component of n
is dropped e.g. if |n

y

| is the

largest we project onto the

xz plane, dropping the y

coordinate.

Projection onto primary planes
After projection to a 2D plane we can test for a point being inside

the triangle using barycentric coordinates:

– =
f

P1P2(x , y)

f

P1P2(x0, y0)

— =
f

P2P0(x , y)

f

P2P0(x1, y1)

“ =
f

P0P1(x , y)

f

P0P1(x2, y2)
,

P

P

P

0

1

2

s
t

s'
t'

r'

r

� =
�r�
�r�� , � =

�s�
�s�� , � =

�t�
�t��

where

f

pq

(x , y) = (y
q

≠ y

p

)x ≠ (x
q

≠ x

p

)y + x

q

y

p

≠ y

q

x

p

Overview

• Ray tracing overview

• Ray trees

• Intersections

• Spheres

• Planes

• Polygons

• Bounding volumes

• Bounding volume hierarchies

Bounding volumes

• We want to reduce number of ray-object intersections to test

• Use bounding volumes:

• Test for an intersection with bounding volume

• Only test intersection with objects inside volume if we
intersect the bounding volume

• Boxes, spheres

*

Hierarchical structures

• Enclose objects in hierarchical bounding volumes

• Octrees, KD-trees

• Bounding volume hierarchies

*

Bounding volume hierarchy

• Give each object a bounding volume

• The bounding volume does not partition

• The bounding volumes can overlap each other

• The volume higher in the hierarchy contains their children

• If a ray misses a bounding volume, no need to check for intersection with children

• If we intersect a bounding volume, check intersection with children

*

Producing the hierarchy

• Find bounding box of objects

Producing the hierarchy

• Find bounding box of objects

• Split into two groups

Producing the hierarchy

• Find bounding box of objects

• Split into two groups

• Recurse

Producing the hierarchy

• Find bounding box of objects

• Split into two groups

• Recurse

Producing the hierarchy

• Find bounding box of objects

• Split into two groups

• Recurse

Producing the hierarchy

• Find bounding box of objects

• Split into two groups

• Recurse

Where to split?

• At midpoint

• Sort and put half on each side

*

Computing intersections

*

Summary

• Simple but computationally expensive

• Easily includes reflection, refraction and shadows

• Calculating intersections is main bottleneck

• Reduce the number of intersection calculations using a
bounding volume hierarchy

*

References

• Shirley Chapter 4 (Ray tracing)

• Shirley Chapter 12.3 (12.3.1,12.3.2) (Spatial Data
Structures)

• Foley Chapter 15.10 (Visible-surface ray tracing), 16.11,16.12
(Global illumination, Recursive ray tracing)

• Akenine-Möller Chapter 16.6, 16.8 (Ray/Sphere intersection,
Ray/Triangle intersection)

*

