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Overview

e Ray tracing overview

e Ray trees
e |ntersections
e Spheres
e Planes
e Polygons
e Bounding volumes

e Bounding volume hierarchies



Ray tracing (Appel '68)

e One of the most popular methods used in 3D computer
graphics to render an image

e Different from the rasterisation-based approach

e Good at simulating specular effects, producing shadows

e Also used as a function for other global illumination
techniques




Ray tracing

e Tracing the path taken by a ray of light through the scene

e Rays are cast to each pixel. They are reflected, refracted, or
absorbed whenever they intersect objects




Procedure

e Rays that miss the objects are coloured as the background




Procedure

e When a ray hits an object...




Procedure

e Check for shadowing:

e (ast a shadow ray towards each light source




Shadow rays

o If shadow ray hits another object, only apply ambient lighting

e Otherwise perform local Phong illumination
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Shadow rays




Reflected rays

e Also generate a reflected ray, and test for intersections with the scene




Reflected rays

o If the reflected ray intersects an object, apply local
illumination at intersection point, and return result to original
Intersection point




Refracted rays

o |f the object is transparent, calculate refracted ray based on
Snell’s law
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Refracted rays

e As with reflection, calculate local illumination of intersection
of refracted ray, and return to original intersection




Ray tracing outline

e Shadow ray

o Reflection ray

o Refraction ray

e Combine contributions from each ray:

I = Iiocal + kr R+ kT



Ray Tree (Whitted '80)

o Reflection and refraction rays are recursively cast on hitting a
surface

e Performed to some depth and then returned to the previous
hits

\ V (Viewerdirection)




Test scene

e Ray tree of depth 1. Mirror and teapot are reflective but no

reflected ray is cast




Test scene

e Ray tree of depth 2. Reflection of mirror and teapot have no

reflections on them!




Test scene

o Ray tree of depth 3. Reflection of mirror on reflected teapot

has no reflection.




Test scene

e Ray tree of depth 4. No reflection on teapot in reflection of

mirror on teapot in mirror.




Test scene

e Ray tree of depth 5...




Test scene

e Ray tree of depth 6...




Test scene

e Ray tree of depth 7...




Ray trees on a specular surface

e Compute the colour of each ray:
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e In one single equation:
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Stopping

e Need to decide when to stop:
e When we hit a completely diffuse surface
e On specular surfaces at some fixed depth

e Once the product of coefficients falls below a threshold
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Hall, R. A. and Greenberg D.P. , "A Testbed for Realistic Image Synthesis", IEEE
Computer Graphics and Applications, 3(8), Nov., 1983
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Complexity?

e Ray tracing - at a resolution of w by h, and N triangles, O(?)

e Rasterisation - with V vertices and N triangles, O(?)
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e Ray trees
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e Bounding volume hierarchies



Parametric representation of rays

e Ray is a line from some origin e in direction d. E.g. starting

at the camera in the direction of the pixel, or starting on the
surface in the direction of reflection or refraction

e Given an object represented by an implicit surface we can find
the value of t at which the ray intersects the object

« Knowing t at the intersection we can calculate the
coordinates of the intersection

r(t) =e+ td



Implicit representation of spheres

We can represent a sphere using an implicit equation of the form
f(p) =0.

A sphere is defined by (x — s,)° + (y — 5,)° + (z — 5,)° = r?, so
for a sphere with center at coordinates s and of radius r:

P
(p—s)-(p—s)—r’=0




Ray/sphere intersection

To find the intersection of a ray with a sphere, we substitute
r(t) = e + td into the implicit equation for a sphere:

(e+td—s)-(e+td—s)—r°=0
(d-d)t°+2d-(e—s)t+(e—s)-(e—s)—r°=0

his is a quadratic equation in t, e.g. at®> + bt + ¢ = 0, and so we
can find the solutions for t using:

—b + \/b2 — 43c
23




Ray/sphere intersection

This gives us the solution for t as:

—2d - (e—s)+ \/(Qd-(e—s))2—4(d-d)((e—s)-(e—s)—r2)

- 2(d - d)

With the number of solutions determined by the value in the
square root.

» If b°> — 4ac > 0 there are two intersections of the ray with the
sphere

» If b> — 4ac = 0 the ray grazes the sphere and there is a single
Intersection

» If b> — 4ac < 0 the ray misses the sphere completely.






Implicit representation of planes

A plane can be described by the
implicit equation

(p—s)-n=0

where s is a point on the plane,
and n is the normal vector to the
plane. Points p satisfying this
equation lie on the plane.

For points a, b on the plane:

n=(a—s)x(b-—s)
(p—s)-((a—s)x(b—-s))=0



Ray/plane intersections

To calculate the intersection of a ray with a plane we substitute the
equation for the points on the ray into the implicit plane equation:

(e+td—s)- n=0
(e—s)-n+td-n=20

(s—e)-n

f —
d n

In the case where d - n = 0 the ray is parallel to the plane, and so
does not intersect it.



Ray/triangle intersection

First perform intersection with the plane:

:(s—e)-n

t
d n

Then test if the point r(t) = e + td lies within the triangle.



Projection onto primary planes

To make things simpler, we project the triangle onto one of the
planes corresponding to a pair of axes (xy, yz or xz).

» We chose the plane on
which the triangle has the
largest projection, using the
normal vector n.

» The largest component of n
is dropped e.g. if |n,| is the
largest we project onto the
xz plane, dropping the y
coordinate.

N



Projection onto primary planes
After projection to a 2D plane we can test for a point being inside
the triangle using barycentric coordinates:
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Bounding volumes

e« We want to reduce number of ray-object intersections to test

e Use bounding volumes:

e Test for an intersection with bounding volume

e Only test intersection with objects inside volume if we
intersect the bounding volume By

o Boxes, spheres g
| |‘




Hierarchical structures

o Enclose objects in hierarchical bounding volumes
e Octrees, KD-trees

e Bounding volume hierarchies

<




Bounding volume hierarchy

e Give each object a bounding volume

e The bounding volume does not partition

e The bounding volumes can overlap each other

e The volume higher in the hierarchy contains their children

e If a ray misses a bounding volume, no need to check for intersection with children

o If we intersect a bounding volume, check intersection with children




Producing the hierarchy

e Find bounding box of objects




Producing the hierarchy

e Find bounding box of objects

e Split into two groups




Producing the hierarchy
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Producing the hierarchy

e Find bounding box of objects
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Producing the hierarchy

e Find bounding box of objects
e Split into two groups

e Recurse




Where to split?

e At midpoint

e Sort and put half on each side




Computing intersections

intersect (node,ray,hits) {
if ( intersectp (node->bound, ray)
if( leaf (node) )
intersect (node->prims,ray,hits)
else
for each child
inter sect(child,ray,hits)



Summary

e Simple but computationally expensive
o Easily includes reflection, refraction and shadows
e (alculating intersections is main bottleneck

e Reduce the number of intersection calculations using a
bounding volume hierarchy
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