Computer Graphics 1 - Introduction

Tom Thorne

thomas.thorne@ed.ac.uk www.inf.ed.ac.uk/teaching/courses/cg/

What is in the course?

Graphics algorithms, data structures and rendering

- object representations
- ▶ 3D transformations
- rasterisation
- lighting and shading

OpenGL

Lab session

Photorealistic rendering

- Ray tracing
- Monte Carlo methods
- Photon mapping

Overview for today

- Topics and applications in computer graphics
- ▶ SIGGRAPH
- Quick refresher on vector and matrix algebra
- Graphics pipelines, lectures overview

Streams of computer graphics

- 2D and 3D modeling
- Interactive applications
- Realistic rendering

Modeling

Designing curved surfaces – car and aircraft manufacturers

- ► Renault, Pierre Bézier
- Citroën, Paul de Casteljau

Interactive applications

- Sketchpad (1963, Ivan Sutherland)
- ▶ Flight simulations
- ► Games: Tennis (1958), Spacewar (1962)

Realistic rendering

Lots of work at the Univeristy of Utah

- Gouraud shading (1971)
- ▶ Phong illumination model (1973)
- ▶ Phong shading (1975)

Realistic rendering

- ► Bump mapping (Blinn, 1978)
- Subdivision surfaces (Catmull, Clark, 1978)

Applications - Animation and film

Applications - Animation and film

Realistic lighting

▶ Reflection of light around the scene

Physical simulation

▶ making fluids, smoke, solid objects etc. move realistically

Character animation

realistic or natural looking movement and facial expressions

Applications - Games

Real time, usually at 30 or 60 frames per second

- ► Rendering
- ► Character movement, AI
- Physical simulations
- ▶ User input

Modeling

Computer aided design and 3D modeling

Applications - Scientific visualisation

Transforming large amounts of data into forms that are easy to interpret

- volume rendering
- complex networks

Challenges

- reducing number of dimensions
- interactivity
- visual perception

SIGGRAPH

Special Interest Group on Graphics and Interactive Techniques

- ► The world's biggest computer graphics conference, running since 1974
- Many import techniques published as SIGGRAPH papers
- http://http://www.siggraph.org
- Collection of recent papers here http://kesen.realtimerendering.com

Maths for computer graphics

Computer graphics involves lots of maths

- ▶ 2D and 3D coordinates
- Matrix transformations
- Reflection and refraction
- Curved surfaces

Vector spaces

E.g. two dimensions

Laws

$$egin{array}{lll} oldsymbol{a}+oldsymbol{b}&=&oldsymbol{b}+oldsymbol{a} \ (oldsymbol{a}+oldsymbol{b})+oldsymbol{c}&=&oldsymbol{a}+(oldsymbol{b}+oldsymbol{c}) \ \lambda(oldsymbol{a}+oldsymbol{b})&=&\lambda(oldsymbol{a}+\lambdaoldsymbol{b} \ (\lambda\mu)oldsymbol{a}&=&\lambda(\muoldsymbol{a}) \ oldsymbol{a}+oldsymbol{0}&=&oldsymbol{a} \ oldsymbol{a}+oldsymbol{0}&=&oldsymbol{a} \ oldsymbol{a}+oldsymbol{b}&=&oldsymbol{a} \ oldsymbol{a}+oldsymbol{b}&=&oldsymbol{a} \ oldsymbol{a}+oldsymbol{b}&=&oldsymbol{a} \ oldsymbol{a}+oldsymbol{a}&=&oldsymbol{a} \ oldsymbol{a}+oldsymbol{a}&=&oldsymbol{a} \ oldsymbol{a}+oldsymbol{b}&=&oldsymbol{a} \ oldsymbol{a}+oldsymbol{a}&=&oldsymbol{a} \ oldsymbol{a}+oldsymbol{a}&=&oldsymbol{a} \ oldsymbol{a}+oldsymbol{a}&=&oldsymbol{a} \ oldsymbol{a}+o$$

$$\boldsymbol{u} = \begin{pmatrix} x \\ y \end{pmatrix}$$
$$\|\boldsymbol{u}\| = \sqrt{x^2 + y^2}$$

N dimensions

$$oldsymbol{v} = \begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix}$$
 $\|oldsymbol{v}\| = \sqrt{x_1^2 + x_2^2 + \ldots + x_N^2}$

Subspaces

Line $\mathbf{a} = \lambda \mathbf{u}$

Plane $oldsymbol{a} = \lambda oldsymbol{u} + \mu oldsymbol{v}$

3D space $\mathbf{a} = \lambda \mathbf{u} + \mu \mathbf{v} + \nu \mathbf{w}$

Linear dependence

Two vectors are *linearly* dependent if:

for some α and β not both zero. More generally for n vectors:

Dot product

$$\boldsymbol{u} \cdot \boldsymbol{v} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} \cdot \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$$

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$$

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

$$\mathbf{u} \cdot (\lambda \mathbf{v} + \mu \mathbf{w}) = \lambda (\mathbf{u} \cdot \mathbf{v}) + \mu (\mathbf{u} \cdot \mathbf{w})$$

$$\|w\| = u \cdot v$$

Coordinate systems

In an N dimensional vector space V, a set of N linearly independent vectors forms a *basis*. For some vector $u \in V$:

$$\boldsymbol{u} = \alpha \boldsymbol{e}_1 + \beta \boldsymbol{e}_2 + \ldots + \nu \boldsymbol{e}_N$$

A basis e_1, \ldots, e_N is *orthogonal* if for all $e_i, e_j, i \neq j$:

$$\boldsymbol{e}_i \cdot \boldsymbol{e}_j = 0$$

A basis e_1, \ldots, e_N is *orthonormal* if it is orthogonal and for all e_i :

$$\|{\bm{e}}_i\| = 1$$

Cross product

$$\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta$$

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \times \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} bz - cy \\ cx - az \\ ay - bx \end{pmatrix}$$

$$\mathbf{v} \times \mathbf{u} = -\mathbf{u} \times \mathbf{v} \neq \mathbf{u} \times \mathbf{v}$$

Matrix algebra

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & \dots & \dots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

$$A(BC) = (AB)C$$

$$AB \neq BA$$

$$(A+B)C = AC+BC$$

$$AI = IA = A$$

$$(AB)^{T} = B^{T}A^{T}$$

Light transport

▶ Ultimate aim is to simulate light transport

Real time rendering:

Various approximations, smoke and mirrors (tricks)

Photorealistic rendering:

- Ray tracing
- Approximation through Monte Carlo integration
- Hybrid methods

Light transport equation

$$L(P, \omega_o) = L^e(P, \omega_o) + L^{\text{ref}}(P, \omega_o)$$

$$= L^e(P, \omega_o)$$

$$+ \int_{\omega_i \in S(P)} L(R(P, \omega_i), -\omega_i) f_r(P, \omega_i, \omega_o) (\omega_i \cdot \mathbf{n}_P) d\omega_i$$

Graphics pipeline

Geometry

- Transformation
- ► Perspective projection
- Hidden surface removal

Shading and lighting

- Reflections
- Shadows

Rasterisation

- Anti aliasing
- ▶ Texture mapping
- Bump mapping
- Ambient occlusion

Example scene

Object models (lecture 2)

Geometry stage

- Transforming objects
- View transformation
- ▶ Illumination and shading (for vertices)

Object transformation (lecture 3)

Placing objects in the scene

- Rotation
- Scaling
- Translation

Perspective projection

Viewing the scene from a specific camera position - perspective transformation of 3D coordinates to 2D screen coordinates

Hidden surface removal (lecture 13)

Shading and lighting (lecture 5)

Determining the lighting of each pixel

Constant shading

Flat shading

Gouraud shading

Specular highlights

Rasterisation (lecture 7)

Texture mapping (lecture 8)

Other effects

- ▶ Bump mapping (lecture 14)
- ▶ Reflections (lecture 9)
- ▶ Shadows (lecture 12)

Photorealistic rendering (lectures 14/15)

Curves and surfaces (lectures 16/17)

Coursework

Coursework 1:

- OpenGL
- Lecture 4 is a lab session for coursework 1 and to introduce OpenGL
- ▶ Deadline 4pm on 24/10/14

Coursework 2:

- Raytracing
- ▶ Lecture 11 is a lab session for coursework 2
- ▶ Deadline 4pm on 21/11/14

For both:

- ▶ Written in C++
- ▶ Must compile and run on DICE (Scientific Linux 6.5)
- ▶ See course page for submission details

Books

Fundamentals of Computer Graphics

Shirley and Marschner, CRC Press, 2010.

Books

Computer Graphics Principles and Practice

Foley, van Dam, Feiner and Hughes, Addison Wesley, 1997.

Introduction to Computer Graphics

Foley, van Dam, Feiner, Hughes and Phillips, Addison Wesley, 1995.

References

Reading

- ► Shirley, Chapter 2.4 (Miscellaneous Math Vectors)
- ► Foley, Appendix A.1-A.5 (Maths for Computer Graphics)