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What is in the course?

Graphics algorithms, data structures and rendering

I Object representations
I Lighting and shading
I 3D transformations
I OpenGL
I Rasterisation

Photorealistic rendering

I Ray tracing
I Monte Carlo methods
I Photon mapping

Curves and curved surfaces



Graphics pipeline
Geometry

I Transformation
I Perspective projection
I Hidden surface removal

Shading and lighting

I Reflections
I Shadows

Rasterisation

I Anti aliasing
I Texture mapping
I Bump mapping
I Ambient occlusion



Example scene

$Q�H[DPSOH�WKUR¶�WKH�
SLSHOLQH«

/HFWXUH��

7KH�VFHQH�ZH�DUH�WU\LQJ�WR�UHSUHVHQW�

,PDJHV�FRXUWHV\�RI�3LFWXUH�,QF�



Object models (lecture 2)



Geometry stage

I Transforming objects
I View transformation
I Illumination and shading (for vertices)



Object transformation (lecture 3)

Placing objects in the scene

I Rotation
I Scaling
I Translation



Perspective projection

Viewing the scene from a specific camera position - perspective
transformation of 3D coordinates to 2D screen coordinates
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Specular highlights
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Rasterisation (lecture 7)
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Texture mapping (lecture 8)



Other e�ects

I Bump mapping (lecture 14)
I Reflections (lecture 9)
I Shadows (lecture 12)



Overview
Polygon meshes

I Storage
I Representation
I Decomposition
I Quad meshes
I Generation
I Implicit surfaces

Level of detail

I Scaling methods

Image representations

I Pixel Bu�ers
I Alpha channels
I Z bu�ers



Mesh structures

Objects represented as a set of polygons



Triangle representation

I Polygons can be broken down into triangles



Mesh topology
Manifolds:

I All edges belong to two triangles
I All vertices have a single continuous set of triangles around

them



Mesh topology
Manifolds with boundaries:

I All edges belong to one or two triangles
I All vertices have a single continuous set of triangles around

them



Mesh topology

Examples of non-manifold meshes:

T



Storage format

Vertices:
-1 1 1
-1 -1 1
1 -1 1
1 1 1

-1 1 -1
-1 -1 -1
1 -1 -1
1 1 -1

Polygons:
1 2 3
1 3 4
1 4 8
1 8 5
4 3 8
3 7 8
5 7 6
5 8 7
1 5 2
5 6 2
2 6 7
2 7 3

1

2 3

4

5

6 7

8



Orientation

Vertexes in triangle list stored in counter clockwise order



Triangle fans

Instead of storing 3T vertices, store T + 2



Triangle strips

Instead of storing 3T vertices, store T + 2



Minimal spanning tree decomposition
From a mesh, produce a graph where:

I nodes correspond to triangles of the mesh
I edges shared by a pair of triangles become edges in the graph
I cost is set to the Euclidean distance between the triangle and

the root triangle

ing using, for example, Huffman or arithmetic coding as in the JPEG/
MPEG standards [Pennebaker and Mitchell 1993].

To encode the connectivity, the mesh is first cut through a subset of its
edges, called the cut edges. This subset includes all the edges of the vertex
spanning tree. In Section 5 we show that, depending on the topological type
of the mesh, a small number of cut edges that are not vertex spanning tree
edges may also be required. For example, for a simple mesh (mesh that is
homeomorphic to a sphere) such as the one shown in Figure 2, we prove
that there are no cut edges other than the vertex spanning tree edges.

Fig. 2. Representation. The vertex spanning tree (a) (b) composed of vertex runs. Cutting
through the vertex tree edges produces topological simply connected polygons (c) (d). The
bounding loop (e) is the boundary of the polygon. The dual graph of the polygon is the triangle
spanning tree (f). Triangle runs end in leaf or branching triangles. Leaf triangles are red,
regular triangles are yellow, and branching triangles are blue. The triangle spanning tree has
a root triangle (g). Marching edges (h) connect consecutive triangles within a triangle run.
Each branching triangle has a corresponding Y-vertex. Two consecutive branching triangles
define a run of length one (i).
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Minimal spanning tree decomposition
A minimal spanning tree produces a tree over a graph which visits
every node whilst minimising costs

I edges are given costs
I a tree with minimal total cost is found



Sprial decomposition

I Generate layers of triangles
I Connect layers into a single

spiral of triangles

boundary. A single bit of information per marching edge is used to encode
the correct side. These bits are concatenated in the order in which the
corresponding marching edges are visited by the decompression algorithm.
They form what we call a marching pattern of left or right steps.

An entry of our representation of the triangle spanning tree indicates the
number N of marching edges in a run and thus the total number of vertices
on both sides of the triangle run. The number of zeros in the corresponding
subset of the marching pattern indicates the number of vertices on the left
side (the number of ones indicates the number of vertices on the right side).

Given two indices into the lookup table for the bounding loop (one for the
starting point of the left boundary of the triangle run and one for the start-
ing point of the right boundary), our decompression algorithm uses the next
N ! 1 bits of the marching pattern and constructs a triangle strip for the
run.

At the end of the run we may encounter a leaf of the triangle spanning
tree or a branching triangle. In the latter case, the last marching edge of
the run forms the base of the abutting branching triangle. The third vertex
of the branching triangle is called a Y-vertex. The corresponding index in
the bounding loop is not explicitly stored in our compressed format, but is
derived through a decompression preprocessing step and stored in a lookup
table in the form of an index offset relative to the last vertex of the left
boundary of the parent triangle run.

The decompression algorithm will visit the two runs connected to the two
edges of the branching triangle in a recursive manner until the triangle
spanning tree is traversed and all triangles recovered. Long triangle strips

Fig. 3. Two ways of peeling an orange: (a) (b) the thick edges are the edges of the vertex tree
constructed on the mesh; (c) (d) the mesh is cut through the vertex tree edges (the vertex
positions have been modified here only to illustrate the creation of the cut); (e) (f) the result is
a topological simply connected polygon. The dual graph of this polygon is the triangle tree.
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layer. The n ! 1st boundary consists of all the edges of triangles of the nth
layer with neither of the two end vertices belonging to the nth layer. The
boundary edges do not constitute a tree, but most typically each boundary
is composed of one or more cycles. The layers are also typically composed of
cyclical triangle paths. This construction can incrementally generate both
trees by converting the rings into a spiral. Let us assume that a vertex tree
has been constructed with all the vertices included in the first n bound-
aries, and a triangle forest has been constructed with all the triangles
included in the first n " 1 layers. For each connected component of the n !
1st boundary, one edge connecting that component to a vertex of the nth
boundary is chosen and added to the vertex tree. All these cross-edges are
chosen minimizing the number of new branches added to the two trees.
Then the edges of the n ! 1st boundary are included in the vertex tree
after removing a minimum number of edges to maintain the tree struc-
tures. These edges are also chosen minimizing the number of new
branches. Figure 5 illustrates this construction.

Figure 4 illustrates the four techniques on a mesh of 5,138 triangles.
Table I summarizes the results.

4.4.2 Vertex Tree Encoding. The vertex and triangle trees constructed
by one of the algorithms described in the previous section are not rooted. To
encode the vertex tree a leaf is chosen as the root node, and the tree is
traversed in pre-order, with the children of the branching nodes ordered
consistently with the global orientation of the mesh (either clockwise or
counterclockwise) with respect to the parent. Each run of the vertex tree is
represented as a record in the VTREE table. The run length is the number
of edges of the run. The branching bit indicates if a run subsequent to the
current one in the table starts at the same branching node. The leaf bit
indicates if the run ends in a leaf node. For example, when this algorithm is

Fig. 5. Compression algorithm: (a) triangular mesh; (b) topological distance from a chosen
vertex defines the layers; (c) vertex tree and triangle tree are constructed by traversing the
layers in order; (d) polygon resulting from cutting along cut edges with artificial gap
introduced. Triangles are color coded according to their corresponding layer.

98 • G. Taubin and J. Rossignac
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Directed edge data structure

Vertices
x1 y1 z1 e

r

x2 y2 z2 e
s

...
...

...
...

Edges
v

a

v
b

e
neighbour

e
next

e
prev

...
...

...
...

...

next

prev

neighbour



Surface normals
Calculation:

n = (s ≠ r) ◊ (t ≠ r)

r

st
n

u=s-r

v=t-r

u×v



Surface normals
Face normals



Surface normals
Vertex normals



Quadrilateral meshes
Relatively easy to extend to quadrilateral meshes (quadmeshes):

I Same storage format

Problems:

I 4 points don’t always lie on a plane



Quadrilateral meshes

Benefits of quadmeshes:

I Easier to align edges to curvature or feature lines defining an
object

I Easier to apply texture maps
I Simpler to fit using parametric surfaces (e.g. curved surfaces)
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(a) (b) (c) (d)

Figure 7: Prototype of a field guided method: Given an input triangle mesh (a) in the first step an orientation field (b) is
computed which represents the local rotation of quad elements. In the second step a sizing field (c) is determined which
specifies the sample density, which in this example is isotropic and close to uniform, with slight deviations color coded from
blue to red. In the third step, a consistent quadmesh (d) is generated that closely reproduces both guiding fields.

Figure 8: A typical orientation field generation algorithm
first identifies the most important orientations (left) which
are then smoothly extrapolated over the surface (right).

struction methods with all quad mesh synthesis approaches.
Accordingly, the following three sections are devoted to the
generation of orientation fields, sizing field construction and
quad mesh synthesis, respectively.

3.5.1. Orientation field generation

A typical orientation field generation algorithm computes
the smoothest orientation field on the surface subject to some
boundary conditions and/or target directions. Often target
directions are derived from principal curvature information
[CSM03, CP05], so that the most important orientations, i.e.
those in parabolic regions where it is obvious how the quads
have to be oriented in order to achieve a good surface ap-
proximation, are smoothly extrapolated over the surface (see
Figure 8). Other frequently used sources of boundary condi-
tions are feature curves, manually painted strokes or user-
provided singularity information.

It is important to understand that an orientation field be-
haves quite differently as compared to a direction field, i.e.
a unit vector field. Hence, unfortunately the huge arsenal of

vector field design approaches like e.g. [FSDH07, ZMT06]
cannot directly be used for the design of orientation fields.
In the view of Quadcover [KNP07], an orientation field can
be seen as four interlinked direction fields d0 . . .d3 which
are pairwise anti-symmetric, i.e. di = �di+2 mod 4. However,
notice that the space of orientation fields is richer than the
combination of four independent direction fields. In an ori-
entation field around a singularity these direction fields can
be interlinked in such a way that while traversing a small
loop around the singularity the cross rotates by an arbitrary
integer multiple of 90 degree, i.e. a jump from one vector
field to another is possible. Accordingly, in contrast to di-
rection fields, orientation fields allow for singularities with
fractional indices that are integer multiples of 1

4 .

In the literature two different approaches can be
found that were developed in order to handle orienta-
tion field topologies. The first class of approaches uses
nonlinear formulations based on periodic functions like
[HZ00, PZ07, RVAL08], while the other class is based on an
integer valued representation like, e.g., [RVLL08, BZK09].
In both formulations, finding globally optimal solutions, i.e.
the smoothest orientation field subject to some boundary
conditions or fitting data, is a hard task. Especially the place-
ment of singularities turns out to be a crucial but also com-
plicated step within the automatic generation of orientation
fields. As a result, orientation field optimization algorithms
often get stuck in local minima with suboptimal singulari-
ties.

To overcome the above problems, several interactive
methods were developed which allow the user to either mod-
ify or completely specify the singularities of the orientation
field [PZ07, RVLL08, LJX�10, RVAL08, CDS10]. Unfortu-
nately, the specification of all singularities is a tedious task
which additionally requires expert knowledge in order to
achieve good results. Therefore in practice automatic meth-
ods like [HZ00, RLL�06, RVAL08, BZK09] are highly de-
sirable.

submitted to COMPUTER GRAPHICS Forum (3/2012).
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Generating polygon mesh data
Where does the mesh come from?

I Modelling using software (e.g. Blender)
I Scanning (laser range scanning, stereo vision, KINECT)
I Procedural methods

3URFHGXUDO�0RGHOOLQJ

3URGXFLQJ�QHZ�PRGHOV�EDVHG�RQ�UXOHV



Implicit surfaces

Given some potential function f (x) we can evaluate at every point
in space, define an isosurface of all points where f (x) = c

I Metaballs (Blinn, Ohmura)
I

q
i

a

i

r



Marching cubes
Potential is computed at each point on a grid

I where edges of the grid cross the threshold, the surface is
produced

I set of rules for producing the surface based on which edges
cross the threshold

0DUFKLQJ�FXEHV���2XWOLQH

±3UHSDUH�D�JULG
±&RPSXWH�WKH�SRWHQWLDO�DW�WKH�JULG�SRLQWV
±,I�WKH�HGJHV�FURVV�WKH�WKUHVKROG��SURGXFH�WKH�
VXUIDFH



Level of detail scaling

When an object is close to the camera we usually want a very
detailed model. But not when:

I further away (taking up a small amount of space on screen)
I facing away from the camera
I outside the view volume



Level of detail scaling
Progressive meshes

I some polygons may be much closer to camera than others,
within a single mesh(a) Base meshM0 (1 face) (b) M514 (1,000 faces) (c)M5066 (10,000 faces) (d) M=Mn (79,202 faces)

Figure 11: The PM representation of a mesh M captures a continuous sequence of view-independent LOD meshes M0 Mn =M.

(a) Top view ( =0 0 ; 33,119 faces) (b) Top and regular views ( =0 33 ; 10,013 faces)

(c) Texture mapped M (79,202 faces) (d) Texture mapped (10,013 faces) (e) 764 generalized triangle strips
Figure 12: View-dependent refinement of the same PM, using the view frustum (highlighted in orange) and a screen-space geometric error
tolerance of (a) 0% and (b,d,e) 0.33% of window size (i.e. 2 pixels for a 600 600 image).

(a) OriginalM (19,800 faces) (b) Front view and (c) Top view ( =0 075 ; 1,422 faces)
Figure 13: View-dependent refinement of a tessellated sphere, demonstrating (b) the directionality of the deviation spaceDn̂ (more refinement
near silhouettes) and (c) the surface orientation criterion (coarsening of backfacing regions).

Figure 14: View-dependent refinement ( = 0 15 ; 1,782 faces) of a truncated PM representation (10,000 faces in M) created from a
tessellated parametric surface (25,440 faces). Interactive frame rate near this viewpoint is 14.7 frames/sec, versus 6.8 frames/sec using M.

(a) Original M (42,712 faces) (b) View 1 (3,157 faces) (c) View 2 (2,559 faces)
Figure 15: Two view-dependent refinements of a general mesh M using view frustums highlighted in orange and with set to 0.6%.

(a) Original M (69,473 faces) (b) Front view and (c) Top view ( =0 1 ; 10,528 faces)
Figure 16: View-dependent refinement. Interactive frame rate near this viewpoint is 6.7 frames/sec, versus 1.9 frames/sec using M.
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Figure 17: Height of vertex hierarchy,
and number of faces in mesh of Figure 16b,
as functions of the bias parameter c used
in PM construction of bunny.



Level of detail scaling

Progressive meshes

fn1

ecol

vsplit

fl fr

fn1fn3
fn3

fn0 fn0
fn2 fn2

vu

vt

vs

Figure 2: New definitions of vsplit and ecol.

3 SELECTIVE REFINEMENT FRAMEWORK
In this section, we show that a real-time selective refinement frame-
work can be built upon an arbitrary PM.
Let a selectively refined meshMS be defined as the mesh obtained

by applying to the base meshM0 a subsequence S 0 n 1
of the PM vsplit sequence. As noted in Section 2.2, an arbitrary
subsequence S may not correspond to a well-defined mesh, since a
vsplit transformation is legal only if the current mesh satisfies some
preconditions. These preconditions are analogous to the vertex or
face dependencies found inmost hierarchical representations [6, 14,
24]. Several definitions of vsplit legality have been presented (two
in [10] and one in [24]); ours is yet another, which we will introduce
shortly. Let be the set of all meshes MS produced from M0 by a
subsequence S of legal vsplit transformations.
To support incremental refinement, it is necessary to consider not

just vsplit’s, but also ecol’s, and to perform these transformations
in an order possibly different from that in the PM sequence. A
major concern is that a selectively refined mesh should be unique,
regardless of the sequence of (legal) transformations that leads to it,
and in particular, it should still be a mesh in .
We first sought to extend the selective refinement scheme of [10]

with a set of legality preconditions for ecol transformations, but
were unable to form a consistent framework without overly restrict-
ing it. Instead, we began anew with modified definitions of vsplit
and ecol, and found a set of legality preconditions sufficient for con-
sistency, yet flexible enough to permit highly adaptable refinement.
The remainder of this section presents these new definitions and
preconditions.

New transformation definitions The new definitions of vsplit
and ecol are illustrated in Figure 2. Note that their effects on
the mesh are still the same; they are simply parametrized differ-
ently. The transformation vsplit(vs vt vu fl fr fn0 fn1 fn2 fn3), re-
places the parent vertex vs by two children vt and vu. Two new
faces fl and fr are created between the two pairs of neighboring
faces (fn0 fn1) and (fn2 fn3) adjacent to vs. The edge collapse trans-
formation ecol(vs vt vu ) has the same parameters as vsplit and
performs the inverse operation. To support meshes with bound-
aries, face neighbors fn0 fn1 fn2 fn3 may have a special nil value,
and vertex splits with fn2 = fn3 =nil create only the single face fl.
Let denote the set of vertices in all meshes of the PM sequence.

Note that is approximately twice the number V of original
vertices because of the vertex renaming in each vsplit. In contrast,
the faces of a selectively refined meshMS are always a subset of the
original faces F. We number the vertices and faces in the order that
they are created, so that vspliti introduces the vertices ti= V0 +2i+1
and ui = V0 +2i+2. We say that a vertex or face is active if it exists
in the selectively refined mesh MS.

Vertex hierarchy As in [24], the parent-child relation on the
vertices establishes a vertex hierarchy (Figure 3), and a selectively
refined mesh corresponds to a “vertex front” through this hierarchy
(e.g. M0 and M in Figure 3). Our vertex hierarchy differs in two
respects. First, vertices are renamed as they are split, and this

M0

v8 v9v4 v5

v6 v7

v12 v13

v1 v2 v3

v10 v11

v14 v15M̂

Figure 3: The vertex hierarchy on forms a “forest”, in which the
root nodes are the vertices of the coarsest mesh (base meshM0) and
the leaf nodes are the vertices of the most refined mesh (original
meshM).

vsplit

vu

vs

vt fl fr
fn0 fn1 fn2 fn3

ecol

destroys/
creates

requires

vt vu fl fr

vs
fn0 fn1 fn2 fn3

Figure 4: Preconditions and effects of vsplit and ecol transforma-
tions.

renaming contributes to the refinement dependencies. Second, the
hierarchy is constructed top-down after loading a PMusing a simple
traversal of the vsplit records. Although our hierarchies may be
unbalanced, they typically have fewer levels than in [24] (e.g. 24
instead of 65 for the bunny) because they are unconstrained.

Preconditions We define a set of preconditions for vsplit and
ecol to be legal (refer to Figure 4).
A vsplit(vs vt vu ) transformation is legal if

(1) vs is an active vertex, and
(2) the faces fn0 fn1 fn2 fn3 are all active faces.
An ecol(vs vt vu ) transformation is legal if

(1) vt and vu are both active vertices, and
(2) the faces adjacent to fl and fr are fn0 fn1 fn2 fn3 , in the config-
uration of Figure 2.

Properties Let be the set of meshes obtained by transitive
closure of legal vsplit and ecol transformations from M0 (or equiv-
alently fromM since the PM sequenceM0 M is legal). For any
meshM=(V F) , we observe the following properties:1

If vsplit(vs vt vu ) is legal, then fn0 fn1 and fn2 fn3 must
be pairwise adjacent and adjacent to vs as in Figure 2.
If the active vertex front lies below ecol(vs vt vu ) (i.e. fl fr
F), then fn0 fn1 fn2 fn3 must all be active.
M , i.e. M = MS for some subsequence S, i.e. = .
M = MS is identical to the mesh obtained by applying to M the
complement subsequence n 1 0 S of ecol transforma-
tions, which are legal.

Implementation To make these ideas more concrete, Figure 5
lists the C++ data structures used in our implementation. A selec-
tively refinable mesh consists of an array of vertices and an array
of faces. Of these vertices and faces, only a subset are active, as
specified by two doubly-linked lists that thread through a subset of

1Although these properties have held for the numerous experiments we
have performed, we unfortunately do not have formal proofs for them as yet.



Summary

I Computer graphics pipeline
I Object representations
I Object decomposition
I Level of detail



Coursework

Coursework 1:

I OpenGL vertex and fragment shaders
I Deadline 4pm on 23/10/15

Coursework 2:

I Ray tracing
I Deadline 4pm on 20/11/15

For both:

I Written in C++
I

Must compile and run on DICE (Scientific Linux 7)
I See course page for submission details



Books

Fundamentals of Computer

Graphics

Shirley and Marschner, CRC
Press, 2010.

Available online via the library



Books

Computer Graphics Principles

and Practice

Foley, van Dam, Feiner and
Hughes, Addison Wesley, 1997.

Introduction to Computer

Graphics

Foley, van Dam, Feiner, Hughes
and Phillips, Addison Wesley,
1995.



Reading

I Reference materials – strongly recommended
I Reference materials – not compulsory but may be useful to

help in understanding of materials
I Papers etc – extra materials for those interested
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