
9/22/2011

1

Computer Graphics

Lecture 2 1

Lecture 2

Transformations

2

Transformations.

What is a transformation?

• P′=T(P)
What does it do?

Transform the coordinates / normal vectors of objects

Why use them?

• Modelling

-Moving the objects to the desired location in the environment

-Multiple instances of a prototype shape

-Kinematics of linkages/skeletons – character animation

• Viewing
– Virtual camera: parallel and perspective projections

3

Types of Transformations

– Geometric Transformations
• Translation
• Rotation
• scaling

•• Linear Linear (preserves parallel lines)
• Non-uniform scales, shears or skews

– Projection (preserves lines)
• Perspective projection
• Parallel projection

– Non-linear (lines become curves)
• Twists, bends, warps, morphs,

22/09/2011 Lecture 1 4

Geometric Transformation

– Once the models are prepared, we need to place them in
the environment

– Objects are defined in their own local coordinate
system

– We need to translate, rotate and scale them to put them
into the world coordinate system

5

2D Translations.

TPP

d

d
T

y

x
P

y

x
P

dyydxx

yxP

yxPP

yx

+=′









=









′
′

=′







=

+=′+=′

′′′

Now

,,

torscolumn vec theDefine

axis.y toparallel d axis, x toparallel d distance a),(Point totranslate

),,(as defined Point

y

x

yx

P
P’

6

2D Scaling from the origin.

















=








′
′

⋅=′









=

=′=′

′′′

y

x
.

0

0

y

x
or

Now

0

0

matrix theDefine

. ,.

axis.y thealong s and

axis, x thealong sfactor aby),(Point to(stretch) scale a Perform

),,(as defined Point

y

x

y

x

y

x

yx

s

s
PSP

s

s
S

ysyxsx

yxP

yxPP

P
P’

9/22/2011

2

7

2D Rotation about the origin.

y

x

r

r

P’(x’,y’)

P(x,y)

θ

8

2D Rotation about the origin.

y

x

r

r

P’(x’,y’)

P(x,y)

θ
φ

y

φ
φ

sin.

cos.

ry

rx

=
=

x

9

2D Rotation about the origin.

y

x

r

r

P’(x’,y’)

P(x,y)

θ
φ

y
φ
φ

sin.

cos.

ry

rx

=
=

x

θφθφφθ
θφθφφθ

cos.sin.sin.cos.)sin(.

sin.sin.cos.cos.)cos(.

rrry

rrrx

+=+=′
−=+=′

10

2D Rotation about the origin.

φ
φ

sin.

cos.

ry

rx

=
=

θφθφφθ
θφθφφθ

cos.sin.sin.cos.)sin(.

sin.sin.cos.cos.)cos(.

rrry

rrrx

+=+=′
−=+=′

Substituting for r :

Gives us :

θθ
θθ

cos.sin.

sin.cos.

yxy

yxx

+=′
−=′

11

2D Rotation about the origin.

θθ
θθ

cos.sin.

sin.cos.

yxy

yxx

+=′
−=′

Rewritingin matrix form gives us :
















 −
=








′
′

y

x

y

x
.

cossin

sincos

θθ
θθ

PRPR ⋅=′






 −
= ,

cossin

sincos
matrix theDefine

θθ
θθ

Transformations.
• Translation.

– P′=T + P

• Scale

– P′=S ⋅ P

• Rotation

– P′=R ⋅ P

• We would like all transformations to be multiplications so
we can concatenate them

• ⇒ express points in homogenous coordinates.

12
















 −
=








′
′

y

x

y

x
.

cossin

sincos

θθ
θθ

9/22/2011

3

Homogeneous coordinates

• Add an extra coordinate, W, to a point.

– P(x,y,W).

• Two sets of homogeneous coordinates represent the

same point if they are a multiple of each other.

– (2,5,3) and (4,10,6) represent the same point.

• If W≠ 0 , divide by it to get Cartesian coordinates of point

(x/W,y/W,1).

• If W=0, point is said to be at infinity.

13

Translations in homogenised

coordinates

• Transformation matrices for 2D translation

are now 3x3.

14

































=
















′
′

1

.

100

10

01

1

y

x

d

d

y

x

y

x

11

=

+=′
+=′

y

x

dyy

dxx

Concatenation.

• When we perform 2 translations on the same point

15

),(),(),(

:expect weSo

),(),(),(

),(

),(

21212211

21212211

22

11

yyxxyxyx

yyxxyxyx

yx

yx

ddddTddTddT

PddddTPddTddTP

PddTP

PddTP

++=⋅

⋅++=⋅⋅=′′

′⋅=′′
⋅=′

Concatenation.

16

?

100

10

01

.

100

10

01

: is),(),(product matrix The

2

2

1

1

2211

=
































⋅

y

x

y

x

yxyx

d

d

d

d

ddTddT

Matrix product is variously referred to as compounding,
concatenation, or composition

Concatenation.

17

Matrix product is variously referred to as compounding, concatenation, or
composition.

















+
+

=
































⋅

100

10

01

100

10

01

.

100

10

01

: is),(),(product matrix The

21

21

2

2

1

1

2211

yy

xx

y

x

y

x

yxyx

dd

dd

d

d

d

d

ddTddT

Properties of translations.

18

),(),(T 4.

),(),(),(),(3.

),(),(),(2.

)0,0(1.

1-
yxyx

yxyxyxyx

yyxxyxyx

ssTss

ssTttTttTssT

tstsTttTssT

IT

−−=

⋅=⋅

++=⋅
=

Note : 3. translation matrices are commutative.

9/22/2011

4

Homogeneous form of scale.

19









=

y

x

yx s

s
ssS

0

0
),(

Recall the (x,y) form of Scale :

















=
100

00

00

),(y

x

yx s

s

ssS

In homogeneous coordinates :

Concatenation of scales.

20

!multiply easy to -matrix in the elements diagonalOnly

100

0ss0

00ss

100

0s0

00s

.

100

0s0

00s

: is),(),(product matrix The

y2y1

x2x1

y2

x2

y1

x1

2211

















⋅
⋅

=
































⋅ yxyx ssSssS

Homogeneous form of rotation.

21































 −
=
















′
′

1

.

100

0cossin

0sincos

1

y

x

y

x

θθ
θθ

)()(

: i.e ,orthogonal are matricesRotation

).()(

matrices,rotation For

1

1

θθ

θθ

TRR

RR

=

−=

−

−

Orthogonality of rotation

matrices.

22

















−=














 −
=

100

0cossin

0sincos

)(,

100

0cossin

0sincos

)(θθ
θθ

θθθ
θθ

θ TRR

















−=
















−−
−−−

=−
100

0cossin

0sincos

100

0cossin

0sincos

)(θθ
θθ

θθ
θθ

θR

Other properties of rotation.

23

careful more be toneed ,rotations 3DFor

same theis

rotation of axis thebecauseonly is But this

)()()()(

and

)()()(

)0(

θφφθ

φθφθ

RRRR

RRR

IR

⋅=⋅

+=⋅
=

How are transforms combined?

02/10/09 Lecture 4 24

(0,0)

(1,1)
(2,2)

(0,0)

(5,3)

(3,1)
Scale(2,2) Translate(3,1)

TS =
2

0

0

2

0

0

1

0

0

1

3

1

2

0

0

2

3

1=

Scale then Translate

Use matrix multiplication: p' = T (S p) = TS p

Caution: matrix multiplication is NOT commutative!

0 0 1 0 0 1 0 0 1

9/22/2011

5

Non-commutative Composition

02/10/09 Lecture 4 25

Scale then Translate: p' = T (S p) = TS p

Translate then Scale: p' = S (T p) = ST p

(0,0)

(1,1)
(4,2)

(3,1)

(8,4)

(6,2)

(0,0)

(1,1)
(2,2)

(0,0)

(5,3)

(3,1)
Scale(2,2) Translate(3,1)

Translate(3,1) Scale(2,2)

Non-commutative Composition

02/10/09 Lecture 4 26

TS =
2

0

0

0

2

0

0

0

1

1

0

0

0

1

0

3

1

1

ST =
2

0

0

2

0

0

1

0

0

1

3

1

Scale then Translate: p' = T (S p) = TS p

2

0

0

0

2

0

3

1

1

2

0

0

2

6

2

=

=

Translate then Scale: p' = S (T p) = ST p

0 0 1 0 0 1 0 0 1

How are transforms combined?

02/10/09 Lecture 4 27

(0,0)

(1,1)
(0,sqrt(2))

(0,0)

(3,sqrt(2))

(3,0)

Rotate 45 deg Translate(3,0)

Rotate then Translate

Caution: matrix multiplication is NOT commutative!

Translate then Rotate

(0,0)

(1,1)

(0,0) (3,0)

Rotate 45 deg
Translate(3,0) (3/sqrt(2),3/sqrt(2))

Non-commutative Composition

02/10/09 Lecture 4 28

TR =
0

1

0

-1

0

0

0

0

1

1

0

0

0

1

0

3

1

1

RT =
1

0

0

1

3

1

Rotate then Translate: p' = T (R p) = TR p

0

0

0

-1

0

0

3

1

1

0

1

0

-1

0

0

-1

3

1
=

=
Translate then Rotate: p' = R (T p) = RT p

0 0 1

0

1

0

-1

0

0

0

0

1

0

1

0

-1

0

0

0

0

1

0

1

0

-1

0

0

0

0

1

0

1

0

-1

0

0

0

0

1

0

1

0

-1

0

0

0

0

1

Types of transformations.

• Rotation and translation

– Angles and distances are preserved

– Unit cube is always unit cube

– Rigid-Body transformations.

• Rotation, translation and scale.

– Angles & distances not preserved.

– But parallel lines are.

29

Transformations of coordinate

systems.
• Have been discussing transformations as

transforming points.

• Always need to think the transformation in the
world coordinate system

• Sometimes this might not be so convenient

– i.e. rotating objects at its location

30

9/22/2011

6

Transformations of coordinate

systems - Example

31

• Concatenate local
transformation matrices
from left to right

• Can obtain the local –
world transformation
matrix

• p’,p’’,p’’’ are the world
coordinates of p after
each transformation

Transformations of coordinate

systems - example

32

• is the world coordinate of point p after n
transformations

Quiz

33

• I sat in the car, and find the side mirror is 0.4m on
my right and 0.3m in my front

• I started my car and drove 5m forward, turned 30
degrees to right, moved 5m forward again, and
turned 45 degrees to the right, and stopped

• What is the position of the side mirror now,
relative to where I was sitting in the beginning?

Solution

• The side mirror position is locally

(0,4,0.3)

• The matrix of first driving

forward 5m is

34

















=
100

510

001

1T

Solution

• The matrix to turn to the right

30 and 45 degrees (rotating -30

and -45 degrees around the

origin) are

35

lyrespective ,

100

0
2

1

2

1

0
2

1

2

1

,

100

0
2

3

2

1

0
2

1

2

3

21

























−=

























−= RR

Solution

The local-to-global transformation matrix at
the last configuration of the car is

The final position of the side mirror can be
computed by TR1TR2 p which is around
(2.89331, 9.0214)

36

























−

















































−

























=

100

0
2

1

2

1

0
2

1

2

1

100

510

001

100

0
2

3

2

1

0
2

1

2

3

100

510

001

21TRTR

9/22/2011

7

This is convenient for character

animation / robotics

37

• In robotics / animation, we
often want to know what is
the current 3D location of
the end effectors (like the
hand)

• Can concatenate matrices
from the origin of the body
towards the end effecter

Transformations of coordinate

systems.

Lecture 4 38

1

)()(

)()(

ji

)(

:shown that be alsocan It

:onsubstitutiby obtain we

and

i systemin point a toj systemin point a converts that transform theas M Define

 system coordinatein point a as Define

−
←←

←←←

←

←

←

=

⋅=

⋅=

⋅=

jiij

kjjiki

k
kj

j

j
ji

i

i

MM

MMM

PMP

PMP

iP

3D Transformations.

• Use homogeneous coordinates, just as in 2D case.

• Transformations are now 4x4 matrices.

• We will use a right-handed (world) coordinate

system - (z out of page).

02/10/09 Lecture 4 39

Translation in 3D.

40



















=

1000

100

010

001

),,(
z

y

x

zyx d

d

d

dddT

Simple extension to the 3D case:

Scale in 3D.

41



















=

1000

000

000

000

),,(
z

y

x

zyx s

s

s

sssS

Simple extension to the 3D case:

Rotation in 3D

• Need to specify which axis the rotation is about.

• z-axis rotation is the same as the 2D case.

42

















 −

=

1000

0100

00cossin

00sincos

)(
θθ
θθ

θzR

9/22/2011

8

Rotating About the x-axis R
x
(θ)

43





















⋅





















−
=





















′
′

11000

0θcosθsin0

0θsinθcos0

0001

1

z

y

x

z

y

x

Rotating About the y-axis

R
y
(θ)

44





















⋅





















−
=





















′

′

11000

0θcos0θsin

0010

0θsin0θcos

1

z

y

x

z

y

x

Rotation About the z-axis

R
z
(θ)

45





















⋅



















−

=





















′
′

11000

0100

00θcosθsin

00θsinθcos

1

z

y

x

z

y

x

Rotation about an

arbitrary axis
• About (ux, uy, uz), a unit

vector on an arbitrary axis

46

x'

y'

z'

1

=

x

y

z

1

uxux(1-c)+c

uyux(1-c)+uzs

uzux(1-c)-uys

0

0

0

0

1

uzux(1-c)-uzs

uzux(1-c)+c

uyuz(1-c)+uxs

0

uxuz(1-c)+uys

uyuz(1-c)-uxs

uzuz(1-c)+c

0

where c = cos θ & s = sin θ

Rotate(k, θ)

x

y

z

θ

u

Rotation

• Not commutative if the axis of rotation are

not parallel

02/10/09

)()()()(αββα xyyx RRRR ≠

Shearing

48



















1000

0100

001

0001

a



















1000

0100

0010

001 a

9/22/2011

9

Calculating the world
coordinates of all vertices

• For each object, there is a local-to-global
transformation matrix

• So we apply the transformations to all the
vertices of each object

• We now know the world coordinates of all
the points in the scene

49

Normal Vectors

50

• We also need to know the direction of the normal
vectors in the world coordinate system

• This is going to be used at the shading operation
• We only want to rotate the normal vector
• Do not want to translate it

Normal Vectors - (2)

51

• We need to set elements of the translation
part to zero



















⇒



















1000

0

0

0

1000
111111

111111

111111

111111

111111

111111

rrr

rrr

rrr

trrr

trrr

trrr

z

y

x

Viewing

52

• Now we have the world coordinates of all
the vertices

• Now we want to convert the scene so that it
appears in front of the camera

View Transformation

Lecture 4 53

�We want to know the positions in the camera coordinate system

�We can compute the camera-to-world transformation matrix using
the orientation and translation of the camera from the origin of the
world coordinate system

Mw←c

View Transformation

54

�We want to know the positions in the camera coordinate system

vw = Mw←c vc

vc = Mw ← c vw

= Mc←w vw

-1

Point in the
world coordinate

Point in the
camera coordinate

Camera-to-world
transformation

9/22/2011

10

Summary.

• Transformations: translation, rotation and scaling

• Using homogeneous transformation, 2D (3D)
transformations can be represented by
multiplication of a 3x3 (4x4) matrix

• Multiplication from left-to-right can be
considered as the transformation of the
coordinate system

• Need to multiply the camera matrix from the left
at the end

• Reading: Foley et al. Chapter 5, Appendix 2
sections A1 to A5 for revision and further
background (Chapter 5)

55

