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Computer Graphics

Lecture 2 1

Lecture 2

Transformations
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Transformations.

What is a transformation?

• P′=T(P) 
What does it do? 

Transform the coordinates / normal vectors of objects 

Why use them?

• Modelling

-Moving the objects to the desired location in the environment 

-Multiple instances of a prototype shape

-Kinematics of linkages/skeletons – character animation

• Viewing
– Virtual camera: parallel and perspective projections
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Types of Transformations

– Geometric Transformations
• Translation
• Rotation
• scaling

•• Linear Linear (preserves parallel lines) 
• Non-uniform scales, shears or skews

– Projection (preserves lines) 
• Perspective projection
• Parallel projection 

– Non-linear (lines become curves) 
• Twists, bends, warps, morphs, 
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Geometric Transformation 

– Once the models are prepared, we need to place them in 
the environment 

– Objects are defined in their own local coordinate 
system

– We need to translate, rotate and scale them to put them 
into the world coordinate system 
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2D Translations.
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2D Scaling from the origin.
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2D Rotation about the origin.
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2D Rotation about the origin.
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2D Rotation about the origin.
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2D Rotation about the origin.
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2D Rotation about the origin.
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Transformations.
• Translation.

– P′=T + P

• Scale

– P′=S ⋅ P

• Rotation

– P′=R ⋅ P

• We would like all transformations to be multiplications so 
we can concatenate them

• ⇒ express points in homogenous coordinates.
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Homogeneous coordinates 

• Add an extra coordinate, W, to a point.

– P(x,y,W).

• Two sets of homogeneous coordinates represent the 

same point if they are a multiple of each other.

– (2,5,3) and (4,10,6) represent the same point.

• If W≠ 0 , divide by it to get Cartesian coordinates of point 

(x/W,y/W,1).

• If W=0, point is said to be at infinity.
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Translations in homogenised 

coordinates

• Transformation matrices for 2D translation 

are now 3x3.
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Concatenation.

• When we perform 2 translations on the same point  
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Concatenation.
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Matrix product is variously referred to as compounding, 
concatenation, or composition

Concatenation.
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Matrix product is variously referred to as compounding, concatenation, or 
composition.
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Properties of translations.
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Homogeneous form of scale.
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In homogeneous coordinates :

Concatenation of scales.
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Homogeneous form of rotation.
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Other properties of rotation.
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How are transforms combined?
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Scale then Translate

Use matrix multiplication:   p'  =  T ( S p )  =  TS p

Caution: matrix multiplication is NOT commutative!

0 0 1 0 0 1 0 0 1
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Non-commutative Composition
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Scale then Translate:   p'  =  T ( S p )  =  TS p

Translate then Scale:   p'  =  S ( T p )  =  ST p
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Translate(3,1) Scale(2,2) 

Non-commutative Composition
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How are transforms combined?
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Caution: matrix multiplication is NOT commutative!
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Non-commutative Composition
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Types of transformations.

• Rotation and translation

– Angles and distances are preserved

– Unit cube is always unit cube

– Rigid-Body transformations.

• Rotation, translation and scale.

– Angles & distances not preserved.

– But parallel lines are.

29

Transformations of coordinate 

systems.
• Have been discussing transformations as 

transforming points.

• Always need to think the transformation in the 
world coordinate system

• Sometimes this might not be so convenient

– i.e. rotating objects at its location  

30
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Transformations of coordinate 

systems  - Example 

31

• Concatenate local 
transformation matrices
from left to right 

• Can obtain the local –
world transformation
matrix

• p’,p’’,p’’’ are the world 
coordinates of p after 
each transformation

Transformations of coordinate 

systems  - example

32

• is the world coordinate of point p after n 
transformations

Quiz

33

• I sat in the car, and find the side mirror is 0.4m on 
my right and 0.3m in my front

• I started my car and drove 5m forward, turned 30 
degrees to right, moved 5m forward again, and 
turned 45 degrees to the right, and stopped

• What is the position of the side mirror now, 
relative to where I was sitting in the beginning?   

Solution

• The side mirror position is locally 

(0,4,0.3) 

• The matrix of first driving 

forward 5m is

34
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Solution

• The matrix to turn to the right 

30 and 45 degrees (rotating -30 

and -45 degrees around the 

origin) are 

35

lyrespective ,

100

0
2

1

2

1

0
2

1

2

1

,

100

0
2

3

2

1

0
2

1

2

3

21

























−=

























−= RR

Solution

The local-to-global transformation matrix at 
the last configuration of the car is 

The final position of the side mirror can be 
computed by TR1TR2 p which is around 
(2.89331, 9.0214) 
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This is convenient for character 

animation / robotics 

37

• In robotics / animation, we 
often want to know what is 
the current 3D location of 
the end effectors (like the 
hand) 

• Can concatenate matrices
from the origin of the body 
towards the end effecter

Transformations of coordinate 

systems.

Lecture 4 38
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3D Transformations.

• Use homogeneous coordinates, just as in 2D case.

• Transformations are now 4x4 matrices.

• We will use a right-handed (world) coordinate 

system - ( z out of page ).
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Translation in 3D.
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Simple extension to the 3D case:

Scale in 3D.
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Simple extension to the 3D case:

Rotation in 3D

• Need to specify which axis the rotation is about.

• z-axis rotation is the same as the 2D case.
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Rotating About the x-axis R
x
(θ) 
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R
y
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Rotation About the z-axis

R
z
(θ) 
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Rotation about an 

arbitrary axis
• About (ux, uy, uz), a unit 

vector on an arbitrary axis
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where   c = cos θ &   s = sin θ

Rotate(k, θ) 
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Rotation 

• Not commutative if the axis of rotation are 

not parallel
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Shearing
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Calculating the world 
coordinates of all vertices 

• For each object, there is a local-to-global 
transformation matrix 

• So we apply the transformations to all the 
vertices of each object

• We now know the world coordinates of all 
the points in the scene

49

Normal Vectors 

50

• We also need to know the direction of the normal 
vectors in the world coordinate system

• This is going to be used at the shading operation 
• We only want to rotate the normal vector
• Do not want to translate it 

Normal Vectors - (2) 

51

• We need to set elements of the translation 
part to zero 
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z
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x

Viewing 

52

• Now we have the world coordinates of all 
the vertices 

• Now we want to convert the scene so that it 
appears in front of the camera 

View Transformation 

Lecture 4 53

�We want to know the positions in the camera coordinate system

�We can compute the camera-to-world transformation matrix using 
the orientation and translation of the camera from the origin of the 
world coordinate system

Mw←c

View Transformation 

54

�We want to know the positions in the camera coordinate system

vw = Mw←c vc

vc = Mw ← c vw

= Mc←w vw

-1

Point in the
world coordinate

Point in the
camera coordinate

Camera-to-world 
transformation
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Summary.

• Transformations:  translation, rotation and scaling

• Using homogeneous transformation, 2D (3D) 
transformations can be represented by 
multiplication of a 3x3 (4x4) matrix 

• Multiplication from left-to-right can be 
considered as the transformation of the 
coordinate system 

• Need to multiply the camera matrix from the left 
at the end

• Reading: Foley et al. Chapter 5, Appendix 2 
sections A1 to A5 for revision and further 
background (Chapter 5) 

55


