Computer Graphics

An Introduction

Taku Komura

Computer Graphics

- Images and movies produced by computers
- Applied in many areas nowadays, becoming an important topic of our society.

Applications:

- Films
- Computer games
- Virtual reality, augmented reality
- Medicine
- 3D design
- Scientific visualization

Computer Graphics is about animation (films)

Games are very important in Computer Graphics

*

VR and AR

Medical Imaging is another driving force

Computer Aided Design too

Scientific Visualisation

What's this course all about?

We will cover...

- Graphics programming and algorithms
- Graphics data structures
- Colour
- Applied geometry, modelling and rendering

Lecture 1

*

First Lecture

Some definitions

Fundamental units we use in these processes

Summary of this course describing through the graphics pipeline

Graphics Definitions

Point a location in space, 2D or 3D sometimes denotes one pixel

Line

*

straight path connecting two points infinitesimal width, consistent density beginning and end on points

Graphics Definitions

- Vertex
 point in 3D
- Edge
 line in 3D connecting two vertices
- Polygon/Face/Facet

arbitrary shape formed by connected vertices fundamental unit of 3D computer graphics

• Mesh

set of connected polygons forming a surface (or object)

Graphics Definitions

Rendering : process of generating an image from the model

Framebuffer : a video output device that drives a video display from a memory containing the color for every pixel

Overview of the Course

- Graphics Pipeline (Today)
 - (Local lighting effects) Illumination, lighting, shading, mirroring, shadowing
 - Rasterization (creating the image using the 3D scene)
- Ray tracing
- Global illumination
- Modelling
 - Curves and Surfaces

Graphics/Rendering Pipeline

- Graphics processes generally execute sequentially
- Pipelining the process means dividing it into stages
- Especially when rendering in real-time, different hardware resources are assigned for each stage

Graphics / Rendering Pipeline

There are three stages **Application Stage Geometry Stage Rasterization Stage**

An example through the pipeline...

The scene we are trying to represent:

Application Stage

Entirely done in software by the CPU

- Read Data

Load the geometry of the scene,

User's input by mice, trackballs, trackers, or sensing gloves

- In response to the user's input, the application stage change the view or scene

3D Shape Models

Designed by polygons, parametric curves/surfaces, implicit surfaces and etc.

Defined in its own coordinate system

Model Transformation

Objects put into the scene by applying translation, scaling and rotation Linear transformation called homogeneous transformation is used The location of all the vertices are updated by this transformation

Perspective Projection

We want to create a picture of the scene viewed from the camera

We apply a perspective transformation to convert the 3D coordinates to 2D coordinates of the screen

Objects far away appear smaller, closer objects appear bigger

Hidden Surface Removal

Objects occluded by other objects must not be drawn

Shading

Now we need to decide the colour of each pixels taking into account the object's colour, lighting condition and the camera position

Shading : Constant Shading - Ambient

Objects colours by its own colour

Shading – Flat Shading

Objects coloured based on its own colour and the lighting condition One colour for one face

Gouraud shading, no specular highlights

Lighting calculation per vertex

Specular highlights added

Rasterization Stage (imaging pipeline)

*

Rasterization

- Converts the vertex information output by the geometry pipeline into pixel information needed by the video display
- Aliasing: distortion artifacts produced when representing a high-resolution signal at a lower resolution.
- Anti-aliasing : technique to remove aliasing

*

Anti-aliasing

Aliased polygons (jagged edges)

*

Anti-aliased polygons

 How is *anti-aliasing* done? Each pixel is subdivided (sub-sampled) in n regions, and each sub-pixel has a color;
 Compute the average color value

Texture mapping

Other covered topics: Reflections, shadows, bump mapping

Other covered topics: Reflections

35

Other covered topics: Shadows

36

Other covered topics: Bump mapping

Other covered topics: Ray Tracing

Other covered topics: Global Illumination

Polynomial Curves, Surfaces

Course support resources

Graphics course website

http://www.inf.ed.ac.uk/teaching/courses/cg

lecture material,

recommended reading,

Links to support material for lectures and projects,

Practical description and resources

Some notifications

- 16 lectures in total
- 2 practicals
- Some tutorials (probably two) about the practicals

Books

Fundamentals of Computer Graphics Shirley and Marschner, CRC Press, 2010. Available online via the library

Tomas Akenine-Möller, Eric Haines, and Naty Hoffman, 1045 pages, from A.K. Peters Ltd., 3rd edition, ISBN 987-1-56881-424-7, 2008,

Computer Graphics Principles and Practice Foley, van Dam, Feiner and Hughes, Addison Wesley, 1997.

Introduction to Computer Graphics Foley, van Dam, Feiner, Hughes and Phillips, Addison Wesley, 1995.

Summary

The course is about algorithms, **NOT** applications

Lots of mathematics

Graphics execution is a pipelined approach

Basic definitions presented

Some support resources indicated