Computer Graphics

Assignment Two

Objective

* Input * Output

)| | CG-CW2" ElE)EH

Objective
* 3 Primitive shapes
- Plane !"
- Sphere
- Triangles

Objective

* 3 Primitive shapes

- Sphere L
- Plane
- Triangle

 Lighting \

Objective

* 3 Primitive shapes

- Sphere L

- Plane

- Triangle
 Lighting
 Shadows

Objective

* 3 Primitive shapes

- Sphere e

- Plane

- Triangle
 Lighting
 Shadows
e Reflections

Source Code — The Ray class

//Defines a ray object
//A ray 1is defined by its origin and its normalised direction
class Ray
{
public:
glm: :vec3 origin;
glm: :vec3 direction;

Ray(const glm::vec3 &origin, const glm::vec3 &direction):
origin(origin),

direction({direction)

{

}

//Returns the position of the ray at time t i.e. the solution to: RayPosition = RayOrigin + time*RayDirection;
//Usage: position = ray(t);
glm: :vec3 operator() (const float &t) const

{
}

return origin + direction*t;

Source Code — Setting up the Ray

©00) Rasterspace (6.0) (00 NDC space (1,0)

* Project 1 ray per N o [E P
p'Xel = /z#/ﬂ L] :\: Ea.':*s'..m.atz} .

» Demo code 0 0 7 O 07 1
converts pixel / N A \

from raster space ..

(-1,1) Screen space (1,1)

to world space \j\' / -
e Demo code 1 e . 6)
accounts for vt sace +— S
aspect ratio and EZEENE

field of view

Source Code — Setting up the Ray

(0,0) Raster space (6.0) (0,0) NDC space (1.0)

* Project 1 ray per Y I I I I
pIX6| | -\H"un_ RE(.'2.5; . | {9_9?’5?;:.42}
A RN -

« Demo code LN S

converts pixel | / BRI | \

from raster space ..

© www.scratchapixel.com \ camera (-1,1) Screen space (1.1)

to V \, coordinate

: §€0.2a 0.9 0.0 0.0
transformation ;s 5’5 o' o'

.............

camera to world ot 0.2 0.8 u.u]

Source Code — Projecting the Ray

* Use “CastRay” as recursive function

//Recursive ray-casting function
J/Called for each pixel and each time a ray is reflected/used for shadow testing
J/@ray The ray we are casting
//@payload Information on the current ray i.e. the cumulative color and the number of bounces it has performed
J/returns either the time of intersection with an object (the coefficient t in the eguation: RayPosition = RayOrigin + t*RayDirection) or zero to
indicate no intersection
float CastRay(Ray &ray, Payload &payload)
{

J/Perform early termination here (use number of bounces)

J//Check if the ray intersects something

IntersectInfo info;

if (CheckIntersection{ray,info)){

return 1.0f;
}

return 9.8f;

» Use “PayLoad” to record current state of the

ray //Holds information about the current state of the ray
class Payload
{
public:
Payload():
color(@.af),
numBounces(0)
{
}

glm::vec3 color; // Accumulated color of this ray.
int numBounces; // Number of bounces this ray has made so far.

Source Code — Ray-Object
intersections

» Extend "Object” class for primitive shapes

- Qverride “Intersect’ function:

//Test whether a ray intersects the object

//@ray The ray that we are testing for intersection

//@info Object containing information on the intersection between the ray and the object(if any)
virtual bool Intersect(const Ray &ray, IntersectInfo &info) const { return true; }

//Used to hold information on the intersection of a ray with an object in the scene
class IntersectInfo

- Usetofillin ¢
1 I nte rSGCﬂ nfo” IntersectInfo():

time(std::numeric limits<float=::infinity()),
hitPoint(0.8f}),

(:IEiE;E; normal(@.6f),

= =

material (NULL)
. . {
- Find material)
prOpertleS for //The position of the intersection in 3D coordinates
glm: :vec3 hitPoint;
the neareSt //The normal vector of the surface at the point of the intersection

glm: :vec3 normal;
//The time along the ray that the intersection occurs

object to the float tine;

//The material of the object that was intersected

Ray S Orlgln N const Material *material;

Additional Functions

» Refractions

* |Intersection of other primitives

* Acceleration structures e.g. Grid, BVHs
e Soft shadows

» Soft reflections

e Depth of Field

» Subsurface scattering

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

