Computer Graphics

Assignment Two
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Source Code — The Ray class

//Defines a ray object
//A ray 1is defined by its origin and its normalised direction
class Ray
{
public:
glm: :vec3 origin;
glm: :vec3 direction;

Ray(const glm::vec3 &origin, const glm::vec3 &direction):
origin(origin),

direction({direction)

{

}

//Returns the position of the ray at time t i.e. the solution to: RayPosition = RayOrigin + time*RayDirection;
//Usage: position = ray(t);
glm: :vec3 operator() (const float &t) const

{
}

return origin + direction*t;



Source Code — Setting up the Ray
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Source Code — Setting up the Ray
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Source Code — Projecting the Ray

* Use “CastRay” as recursive function

//Recursive ray-casting function
J/Called for each pixel and each time a ray is reflected/used for shadow testing
J/@ray The ray we are casting
//@payload Information on the current ray i.e. the cumulative color and the number of bounces it has performed
J/returns either the time of intersection with an object (the coefficient t in the eguation: RayPosition = RayOrigin + t*RayDirection) or zero to
indicate no intersection
float CastRay(Ray &ray, Payload &payload)
{

J/Perform early termination here (use number of bounces)

J//Check if the ray intersects something

IntersectInfo info;

if (CheckIntersection{ray,info)){

return 1.0f;
}

return 9.8f;

» Use “PayLoad” to record current state of the

ray //Holds information about the current state of the ray
class Payload
{
public:
Payload():
color(@.af),
numBounces(0)
{
}

glm::vec3 color; // Accumulated color of this ray.
int numBounces; // Number of bounces this ray has made so far.



Source Code — Ray-Object
intersections

» Extend "Object” class for primitive shapes

- Qverride “Intersect’ function:

//Test whether a ray intersects the object

//@ray The ray that we are testing for intersection

//@info Object containing information on the intersection between the ray and the object(if any)
virtual bool Intersect(const Ray &ray, IntersectInfo &info) const { return true; }

//Used to hold information on the intersection of a ray with an object in the scene
class IntersectInfo

- Usetofillin ¢
1 I nte rSGCﬂ nfo” IntersectInfo():

time(std::numeric limits<float=::infinity()),
hitPoint(0.8f}),

(:IEiE;E; normal(@.6f),

= =

material (NULL)
. . {
- Find material )
prOpertleS for //The position of the intersection in 3D coordinates
glm: :vec3 hitPoint;
the neareSt //The normal vector of the surface at the point of the intersection

glm: :vec3 normal;
//The time along the ray that the intersection occurs

object to the float tine;

//The material of the object that was intersected

Ray S Orlgln N const Material *material;



Additional Functions

» Refractions

* |Intersection of other primitives

* Acceleration structures e.g. Grid, BVHs
e Soft shadows

» Soft reflections

e Depth of Field

» Subsurface scattering
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