
Computer Graphics

Lecture 9
Environment mapping, Mirroring

Today

Environment Mapping
•Introduction
•Cubic mapping
•Sphere mapping
•refractive mapping

Mirroring
•Introduction
•reflection first
•stencil buffer
•reflection last

Environment Mapping : Background
Many objects in the world are glossy or transparent
● Glossy objects reflect the external world
● The world is refracted through the transparent

objects
● Important to make the virtual scene to appear

realistic

Example

Terminator II

Environment Mapping: Background (2)

Precisely simulating such phenomena is computationally
costly
•Requires ray tracing, which can be expensive
•Tracking the rays and finding out where they collide,
further doing a lighting computation there

Environment Mapping
● Simple yet powerful method to generate reflections
● Simulate reflections by using the reflection vector to

index a texture map at "infinity".

The original environment map was
a sphere [by Jim Blinn ’76]

Cubic Mapping
● The most popular method
● The map resides on the

surfaces of a cube around the
object
○ align the faces of the cube with the

coordinate axes

Procedure

During the rasterization, for every pixel,

1. Calculate the reflection vector R using the camera
(incident) vector and the normal vector of the object N

2. Select the face of the environment map and the pixel on the
face according to R

3. Colour the pixel with the colour of the environment map

Look up the environment map just using R
Do not take into account the 3D position of
the reflection point

Procedure

During the rasterization, for every pixel,

1. Calculate the reflection vector R using the camera (incident)
vector and the normal vector of the object N

2. Select the face of the environment map and the pixel on
the face according to R

3. Colour the pixel with the colour of the environment map

Look up the environment map just using R
Do not take into account the 3D position of
the reflection point

Procedure

During the rasterization, for every pixel,

1. Calculate the reflection vector R using the camera (incident)
vector and the normal vector of the object N

2. Select the face of the environment map and the pixel on the
face according to R

3. Colour the pixel with the colour of the environment map

Look up the environment map just using R
Do not take into account the 3D position of
the reflection point

Calculating the reflection
vector

● Normal vector of the surface : N
● Eye Ray : I
● Reflection Ray: R
● N,I,R all normalized

 R = 2 N (N . I)-I
● The texture coordinate is based

on the reflection vector
● Assuming the origin of the

vector is always in the center of
the cube environment map

Indexing Cubic Maps
● Assume you have R and the

cube’s faces are aligned with
the coordinate axes

● How do you decide which
face to use?
○ The reflection vector coordinate with the

largest magnitude

○ R=(0.3, 0.2, 0.8) -> face in +z direction

Indexing Cubic Maps
•How do you decide which texture coordinates to use?
•Divide by the coordinate with the largest magnitude
•Now ranging [-1,1]
•Remapped to a value between 0 and 1.

(0.3,0.2,0.8) -> ((0.3/0.8 +1)*0.5, ((0.2/0.8
+1)*0.5) = (0.6875, 0.625)

Cubic Mapping: How to make one?

•To generate the map:
•Compute by computer graphics
•Or, take 6 photos of a real environment with a

camera in the object’s position : much easier

Made from the Forum Images

What are the potential problems?
How is it different from rendering the scene more accurately?

What will we miss by environment mapping?

A Sphere Map

● A mapping between the reflection vector
and a circular texture

● A mapping between the reflection vector
and a circular texture

A Sphere Map

The whole environment data is in a single
image!
•The resolution near the boundary of the
sphere is quite low…

Sphere Map : Procedure

•Compute the reflection vector at the surface of the object

•Find the corresponding texture on the sphere map

•Use the texture to color the surface of the object

Indexing Sphere Maps
•Given the reflection vector R (Rx,Ry,Rz)

•the (u,v) on the
 spherical map

To generate the Sphere
Mapping

● Take a photograph of a shiny sphere
● Mapping a cubic environment map onto a

sphere
● For synthetic scenes, you can use ray tracing

Issues with the Sphere Mapping
● Cannot change the viewpoint

○ Requires recomputing the sphere map
● Highly non-uniform sampling
● Highly non-linear mapping
● Linear interpolation of texture coordinates picks up the

wrong texture pixels
● Do per-pixel sampling or use high resolution polygons

Correct Linear

How can you make the right image from
the left image?

Where does middle point on the right image corresponds to?
 by Mark VandeWettering

Cons and Pros

How do you compare cube mapping and sphere mapping?
oAdvantages of cube mapping?
oProblem of sphere mapping?

Refractive Environment
Mapping

When simulating effects
mapping the refracted
environment onto translucent
materials such as ice or glass,
we must use Refractive
Environment Mapping

Snell’s Law
● When light passes through a

boundary between two materials
of different density (air and water,
for example), the light’s direction
changes.

● The direction follows Snell’s Law
● We can do environment mapping

using the refracted vector t

 Refractive Environment Mapping
Just use the refraction vector after the first hit as the index to

the environment map
–Costly to compute the second refraction vector
–Better use cubic mapping - Why?

Summary

Environment mapping is a quick way to simulate
the effect of reflecting the world at the surface of a
glossy object
● Practical approaches are the cubic mapping and

the sphere mapping
● Can also be applied for simulating refraction

Today
Environment Mapping

•Introduction
•Cubic mapping
•Sphere mapping
•refractive mapping

Mirroring
•Introduction
•reflection first
•stencil buffer
•reflection last

Mirroring (Flat Mirrors) :
Background

Basic idea: Drawing a scene with mirrors
•Mirrors reflect the world
•A scene with a mirror can be drawn by

rendering the world twice
•original scene, and
•reflected scene

Mirroring (Flat Mirrors) :
Background (2)

Simply rendering the scene
twice can result in problems
● The flipped world may

appear at area outside the
mirror area

● Unless the mirrored world is
hidden by the real world

● We can avoid such problems
using the “stencil buffer”

Reflecting Objects
● If the mirror passes through

the origin, and is aligned
with a coordinate axis, then
just negate appropriate
coordinate

● For example, if a reflection
plane has a normal n=
(0,1,0) and passes the
origin, the reflected vertices
can be obtained by scaling
matrix S(1,-1,1)

MirrorWall

Reflecting Objects (2)
● What if the mirror is not on

a plane that passes the
origin?

● How do we compute the
mirrored world?

● First, we need to compute
the location of objects
relative to the mirror

Reflecting Objects (3)
● To know the positions of

objects with respect to the
mirror coordinate,

● we multiply a transformation
matrix from the mirror to the
world coordinate to their
positions in the world
coordinate

Reflecting Objects (4)
● For finding out the flipped

location in the mirror
coordinate, we multiply the
mirroring matrix

Reflecting Objects (4)
● Now we want to know

where the flipped points are
with respect to the world
origin

● We can multiply the
transformation matrix to
move from the origin to the
mirror to x’’ to know where it
is with respect to O

Reflecting Objects (5)
● Altogether

Reflection Example
The color buffer after

 the final pass

Drawing the mirrored world
Two ways to do it:

1. Draw the mirrored world first, then the real world
•Only using the depth (Z) buffer
•Does not work in some cases

2. Draw the real-world first, and then the mirrored world
•Requires using a stencil buffer

Z-buffer
● One method of hidden surface removal

Basic Z-buffer idea: For every input polygon
•For every pixel in the polygon interior, calculate

its corresponding z value.
•Compare the depth value with the closest value

from a different polygon (largest z) so far
•Paint the pixel (filling in the color buffer) with the

color of the polygon if it is closer

Rendering Reflected First
(Using the depth buffer(Z-buffer))

First pass: Render the reflected scene
without mirror, depth test on
Second pass:
● Disable the color buffer, and render the

mirror polygon (to not draw over the
reflected scene, but setting the Z-buffer on)

● Now the Z buffer of the mirror region is set to
the mirror’s surface

Third Pass:
● Enable the color buffer again
● Render the original scene, without the mirror
● Depth buffer stops from writing over things in

mirror

Reflected Scene First
(issues)

Objects behind the mirror cause
problems:
● The reflected area outside the

mirror region is just overwritten
by the objects in the front

● unless there is a wall, they will
remain visible

Doesn’t do:
● Reflections of mirrors in mirrors

(recursive reflections)
● Multiple mirrors in one scene

(that aren’t seen in each other)

Using the Stencil Buffer to
Created Scenes with Mirrors

The stencil buffer can help to stop
drawing outside the mirror region

We need to use the “Stencil Buffer”
● The stencil buffer acts like a

paint stencil - it lets some
fragments through but not
others

● It stores multi-bit values
● You specify two things:

○ The test that controls which
fragments get through

○ The operations to perform on
the buffer when the test
passes or fails

mirror

Reflection Example

Normal first, reflected area next
First pass:
● Render the scene without the mirror
For each mirror
Second pass:
● Clear the stencil, disable the write to the colour

buffer, render the mirror, setting the stencil to 1 if
the depth test passes

Third pass:
● Clear the depth buffer with the stencil active,

passing things inside the mirror only
● Reflect the world and draw using the stencil test.

Only things seen in the mirror will be drawn
● Combine it with the scene made during the first

pass

The stencil buffer after the second
pass

Rendering the mirrored scene into the
stencil active area

Multiple mirrors
Can manage multiple mirrors
● Render normal view, then do other

passes for each mirror
● A recursive formulation exists

for mirrors that see other
mirrors

● After rendering the reflected area
inside the mirror surface, render the
mirrors inside the mirror surface, and
so on

Conclusion and Summary
● Environment mapping

○ cubic mapping
○ spherical mapping
○ refraction mapping

● Mirroring
○ Flipping the world
○ Zbuffer
○ Stencil buffer

Readings
•Foley 16.5-6
•Real-time Rendering 2, Chapter 5.7, 6.10

Reference

http://brainwagon.org/2002/12/05/fun-with-
environment-maps/

