Computer Graphics

Lecture 6
View Transformation and Clipping

Taku Komura

Overview

e View transformation
— Recap of homogeneous transformation
— Parallel projection
— Perspective projection
— Canonical view volume
e Clipping
— Line / Polygon clipping

Procedure

1. Transform 1nto camera coordinates. (done 1n
Lecture 3)

2. Perform projection into view volume or
screen coordinates.

3. Clip geometry outside the view volume.

View Projection : Topics

e Homogenous transformation
eParallel projection

e Perspective projection

e Canonical view volume

/'[(xu HivsZi)
-\(xu Yo 320)
o] (;
/ gt !
// \"\1?‘\‘\\‘:\ /I - -
- <a,b,c>

Homogeneous Transformations

\ % :Mroj M C—wW M wel VI

L . Local.
Proiection Worldto Local to coordin
matrix camera WOrl ates

matrix matrix

The projection matiix should be 4x4 matrices

to allow general concatenation

Homogeneous Coordinates

ntroduced to represent various transformations
oy multiplications (in Lecture 2)

n homogenous coordinates, (x,y,z,w) represent
the same point when all elements are multiplied
by the same factor

—(2,0,1,1) and (4,0,2,2) are the same points

— To bring back to Cartesian space, need to divide the
other elements by the fourth element w

* (x,y7,Z,w) = (x/w, y/w, z/w, 1)

Camera Coordinate System we use

(same as OpenGL)

Screen

Y

Y

L

X

IN

/ Facing the —z direction

X axis facing the right side

I

X 7 L4 0ne .

Parallel projections
(Orthographic projection)

» Specified by a direction of projection, rather
than a point.

* Objects of same size appear at the same size
after the projection

Parallel projection.

Orthographic Projection onto a plane at z = 0.

X =x,yp=y,z=0.

Y
1 0
Top view 0 1
M =

— 1000

‘/H]% l /7 —O 0
Side view _] O O O_

Front view O »] O O
0 0 0 O
0 0 0 1]

o O O O

Perspective Projection

* Objects far away appear smaller, closer objects
appear bigger

» Specified by a center of projection and the focal
distance (distance from the eye to the projection
plane)

Perspective projection

Centre of projection at the

origin,
Projection plane at z=-d. Projectio
d: focal distance n

Y Plane.

P(x,y,
/ z)Xy

Perspective progl ection — simplest

From similar triangles:

X p X .)‘p y

A~ | P(x,y,z)

SCreen

P(x.y,z)

A

A

v

A4

Py(X,.Yped)

SCreen

P(x,y,z)

Perspective projection.

ey, -d 1] = [4y 1} oy 2 ‘/1]7

Using homogeneous transformation, perspective projection

can be represented as a 4x4 matrix multiplication :

1 0 0 0
01 0 0
M =
o0 10
0 0 -1/d 0

Perspective projection.

Projected point : P, =[x v z w[

- s

1 0 0 O0][x
01 0 O0f]y
P=M_-P= -
P p 00 1 0|z
0 0 -1/d 0] |1

=[x v z wl=[x y z -z/df

X Y Z) X y _d
w W W —z/d’ -z/d’

Alternative formulation.

d
P(x.,y,z)

r)
\ 4

; e Yp P(x,y,z)
- > | il YNy
d
Projection plane at z=0
Centre of projection at
z=d Yp_ X Ve _)
d -z+d d -z+d
Multiply by d
d-x X d-y y
xp — — ; yp - —
-z4+4d (-z/d)+1

—z+d (-z/d)+1

Alternative formulation.

P(x,y,z)

d

Projection plane at z = 0,
Centre of projection at

z =d

Now we can allow d—x

M,

er

P(x.y.,z)

Exercise: where will the two

points be projected onto?

screern

<

) d=1_

(-1,-1,-1)

/
/
/
/
/
Vs
/
/
g
I/

(-2,2,-2)

Problems

» After projection, the depth information 1s lost
* We need to preserve the depth information for
hidden surface removal
* Objects behind the camera are projected to the front of
the camera

screemn

S

3D View Volume

e The volume in which the visible objects exist
— For parallel projection, view volume is a box.
— For perspective projection, view volume is a
frustum.

e The surfaces outside the view volume must
be clipped

7

Canonical View Volume

Checking if a point is within a frustum is costly
We can transform the frustum view volume into a
normalized canonical view volume

By using the idea of perspective transformation

Much easier to clip surfaces and calculate hidden
surfaces

Transforming the View Frustum

* Let us define parameters (1,r,b,t,n,f) that
determines the shape of the frustum

* The view frustum starts at z=-n and ends at
z=-1, with O<n<f

* The rectangle at z=-n has the minimum
corner at (1,b,-n) and the maximum corner at

(r,t,-n)

Transforming View Frustum into
a Canonical view-volume

The perspective canonical view-volume can be transformed
to the parallel canonical view-volume with the following

matrix:
If ze[-n—~fl(0<n<f)then

[2n r+l

e 0 S 0
r—1 r—1
0 2n t+b 0
P, = t—b t-b
0 o _ftn -2
f-n f-n
0 0 -1 0

Final step.

* Divide by w to get the 3-D Cartesian coordinates
* 3D Clipping
* The Canonical view volume 1s defined by:
-1<x<1,-1<y<1l,-1<z<1

« Simply need to check the (Xx,y,z) coordinates and see 1f
they are within the canonical view volume

If ze[-n—f1(0<n< f)then

[2n
r—1

0

o It 0
r—I1
2n t+b 0
t—b t—b
_fHn =2fn
f-n f-n
0 -1 0

Exercise

e How does ABC look like after
the projection?

/ -
/ ey
y /"' -‘_
. / iy
{ _ - / i \ -
\ —/1 1 r l.l, .//"
A & N ‘
T i g
\‘_\101}/’,1; i
4/‘ - "_’——‘_—
T
\3 N
e :\\ .
\ -
N el [/(3,0
o ., i ~ U] C
~ .
X Jil
~ON
T~
._-.-‘\\\

n=1f=3r=11=-Lt=1b=-1

(1 0
0 1
0 0
0 0

0
0
-2
-1

0
0

-3
0

©c O O =

S O = O

If ze|l-n—fl(0<n< f)then

| 2n
r—1

0

0

0

0 (-1
0|1
-3 -1
o1l 1

o ooy

r—I
2n t+b 0
t-b t-b

_f+n =2fn

f-n f-n
0 -1 0 |
C projected
| A B C
37 [-1 3 3] |-11 %
0 1 3 0 1 1 0
—2|7|-1 3 1| |_; L

2

L1 3 2) |, 1

Summary of Projection

. Two kind of projections:
- parallel and perspective

. We can project points onto the screen by
using projection matrices
. Canonical view volume is useful for telling if

the point is within the view volume
- parts outside must be clipped

Overview

e View transformation
— Parallel projection
— Perspective projection
— Canonical view volume

e Clipping
— Line / Polygon clipping

Projecting polygons and lines

e After projection, a line in 3D space
becomes a line in 2D space

e A polygon in 3D space becomes a
polygon in 2D space

=

Clipping

e \We need to clip objects outside the canonical

view volume

¢ Clipping lines (Cohen-Sutherland algorithm)
e Clipping polygons (Sutherland-Hodgman

algorithm)

/////// "7_,

/ Clip Rectangle

Cohen-Sutherland algorithm
A systematic approach to clip lines
Input: The screen and a 2D line segment
(let’s start with 2D first)
Output: Clipped line segment

/.//// T//_

-

Cohen-Sutherland 2D outcodes

1001 1000 1010
0001 0000 0010
0101 0100 0110

e The whole space is split into 9 regions
e Only the center region is visible
e Each region is encoded by four bits

Cohen-Sutherland 2D outcodes

4th bit 3rd bit
1001 1000 1010

T T I ISIRTRSG— S—————————
0001 0000 0010

oS E— ———
0101 : 0100 0110

— 4-bit code called: Outcode

— First bit : above top of window, y > ymax
— Second bit : below bottom, y < ymin

— Third bit : to right of right edge, x > xmax
— Fourth bit : to left of left edge, x < xmin

Cohen-Sutherland algorithm
While (true) {

1. Check if the line segment is trivial
accept/reject

2. Otherwise clip the edge and shorten

J
S S
////// c/ /

/ /’:

AN

Recap of AND/OR operators

OOR0O=0
OOR1=1 (if either is true, true)
10R1=1

OANDO=0

1ANDO=0 (if both are true, true)
1AND1=1

What is a trivial accept?

e All line vertices lie inside box — accept.
— Apply an ‘OR’ operation to the outcodes of two
endpoints

Cohen-Sutherland algorithm
While (true) {

1. Check if the line segment is trivial
/reject

2. Otherwise clip the edge and shorten

}/ /// ~ S iﬁ

"

What 1s a trivial reject?

All line vertices lie outside and on same side — reject.
Apply an ‘AND’ operation to the two endpoints
If not ‘0000°, then reject

Cohen-Sutherland 2D outcodes

1001 | i [1000 .””,,,,aaf‘ 1010
; .| 1000

0001
0001 0000 0010

0101 ;/’T" 0100

Logical AND between codes for 2 endpoints,
Reject line i1f non-zero — trivial rejection.

0000

What about this one?

1001 1000 1010

/

/

/ 0000 0010
0001 ¢

0101 0100 |o110

Logical AND between codes for 2 endpoints,
Reject line if non-zero — trivial rejection.

Cohen-Sutherland algorithm
While (true) {

2. Otherwise clip the edge and shorten

iy TF

-~ —s

Line Intersection.

e Clip the line by edges of the rectangle

e Select a clip edge based on the outcode, split
and feed the new segment on the side of the
rectangle back into algorithm

e Need to perform 4 intersection checks for
each line.

>
pod

A P

-~

e

Cohen-Sutherland algorithm

e How to extend to 3D?
— Also clipping the lines using front / back planes

e How many bits needed for the outcode?

Cohen-Sutherland algorithm

e How to extend to 3D?
— Also clipping the lines using front / back planes

e How many bits needed for the outcode?

Polygon Clipping:
Sutherland-Hodgman’s algorithm
e A systematic approach to clip polygons
e Input: A 2D polygon
e Output : a list of vertices of the clipped polygon
Polygons are clipped at each edge of the
window while traversing the polygon

||||||||||||

Sutherland-Hodgman’s algorithm

e The edges of the polygon are traversed
e The edges can be divided into four types

Inside | Outside

[

Case 1

Inside ||| Outside

Inside | Outside

Inside | Outside

T

/

Output
Intersection

Case 2.

gl

Case 3
No
utput

F

o\

Second First
Output Output

Case 4

Sutherland-Hodgman’s algorithm

For each edge of the clipping rectangle

For each edge of the polygon (connecting pi, pi+1)

—_—

e |f case 1 add p+1 to the output

e |f case 2 add interaction to output

e |f case 4 add intersection and p+1 to output

Insideg

Outside

Inside

Outside

Insideg

Outside

Insidd QOutside

Output
Vertex

U CPC

Output

Intersect]

Case 1

Case 3
No

output.

Second
Output

1

First

Case

]

utput

l_'.

Example

Right
Clip Left Top Clip Boundary
Boundary Clip

Boundary

Bottom Clip Boundary

© (d) (e)

Sutherland-Hodgman algorithm

e How to extend to 3D?

Summary

Projection
Perspective, parallel (orthographic) projection
Canonical view volume

Clipping
Cohen-Sutherland’s algorithm
Sutherland-Hodgmans’s algorithm

Another Good Modern Textbook

http://www.realtimerendering.com/

Akenine-Moller

Real-Time
Rendering

MThHirsd Edditicon

http://www.realtimerendering.com/
http://www.realtimerendering.com/

Readings

Foley et al. Chapter 6 — all of it,
e Particularly section 6.5
Introductory text, Chapter 6 — all of it,
e Particularly section 6.6
Akenine-Moller, Real-time Rendering Chapter
3.5
Clipping lines, polygons
e Foley et al. Chapter 3.12, 3.14

e http://www.cc.gatech.edu/grads/h/Hao-wei.
Hsieh/Haowei.Hsieh/mm.html

