Computer Graphics

Lecture 6
View Transformation and Clipping

Taku Komura



Overview

e View transformation
— Recap of homogeneous transformation
— Parallel projection
— Perspective projection
— Canonical view volume
e Clipping
— Line / Polygon clipping



Procedure

1. Transform 1nto camera coordinates. (done 1n
Lecture 3)

2. Perform projection into view volume or
screen coordinates.

3. Clip geometry outside the view volume.




View Projection : Topics

e Homogenous transformation
eParallel projection

e Perspective projection

e Canonical view volume

/'[(xu HivsZi)
-\(xu Yo 320 )
o] ( ;
/ gt !
// \"\1?‘\‘\\‘:\ /I - -
- <a,b,c>




Homogeneous Transformations
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Homogeneous Coordinates

ntroduced to represent various transformations
oy multiplications (in Lecture 2)

n homogenous coordinates, (x,y,z,w) represent
the same point when all elements are multiplied
by the same factor

—(2,0,1,1) and (4,0,2,2) are the same points

— To bring back to Cartesian space, need to divide the
other elements by the fourth element w

* (x,y7,Z,w) = (x/w, y/w, z/w, 1)



Camera Coordinate System we use

(same as OpenGL)
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Parallel projections
(Orthographic projection)

» Specified by a direction of projection, rather
than a point.

* Objects of same size appear at the same size
after the projection




Parallel projection.

Orthographic Projection onto a plane at z = 0.
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Perspective Projection

* Objects far away appear smaller, closer objects
appear bigger

» Specified by a center of projection and the focal
distance (distance from the eye to the projection
plane)




Perspective projection

Centre of projection at the

origin,
Projection plane at z=-d. Projectio
d: focal distance n
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Perspective progl ection — simplest

From similar triangles:
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Perspective projection.

ey, -d 1] = [ 4y 1} oy 2 ‘/1]7

Using homogeneous transformation, perspective projection

can be represented as a 4x4 matrix multiplication :

1 0 0 0
01 0 0
M =
o0 10
0 0 -1/d 0




Perspective projection.

Projected point : P, =[x v z w[
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Alternative formulation.

d
P(x.,y,z)

r )
\ 4

; e Yp P(x,y,z)
- > | il YNy
d
Projection plane at z=0
Centre of projection at
z=d Yp_ X Ve _ )
d -z+d d -z+d
Multiply by d
d-x X d-y y
xp — — ; yp - —
-z4+4d (-z/d)+1

—z+d (-z/d)+1



Alternative formulation.

P(x,y,z)

d

Projection plane at z = 0,
Centre of projection at

z =d
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Exercise: where will the two

points be projected onto?
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Problems

» After projection, the depth information 1s lost
* We need to preserve the depth information for
hidden surface removal
* Objects behind the camera are projected to the front of
the camera
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3D View Volume

e The volume in which the visible objects exist
— For parallel projection, view volume is a box.
— For perspective projection, view volume is a
frustum.

e The surfaces outside the view volume must
be clipped
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Canonical View Volume

Checking if a point is within a frustum is costly
We can transform the frustum view volume into a
normalized canonical view volume

By using the idea of perspective transformation

Much easier to clip surfaces and calculate hidden
surfaces




Transforming the View Frustum

* Let us define parameters (1,r,b,t,n,f) that
determines the shape of the frustum

* The view frustum starts at z=-n and ends at
z=-1, with O<n<f

* The rectangle at z=-n has the minimum
corner at (1,b,-n) and the maximum corner at

(r,t,-n)




Transforming View Frustum into
a Canonical view-volume

The perspective canonical view-volume can be transformed
to the parallel canonical view-volume with the following

matrix:
If ze[-n—~fl(0<n<f)then

[ 2n r+l

e 0 S 0
r—1 r—1
0 2n t+b 0
P, = t—b t-b
0 o _ftn -2
f-n f-n
0 0 -1 0




Final step.

* Divide by w to get the 3-D Cartesian coordinates
* 3D Clipping
* The Canonical view volume 1s defined by:
-1<x<1,-1<y<1l,-1<z<1

« Simply need to check the (Xx,y,z) coordinates and see 1f
they are within the canonical view volume



If ze[-n—f1(0<n< f)then

[ 2n
r—1

0

o It 0
r—I1
2n t+b 0
t—b t—b
_fHn =2fn
f-n f-n
0 -1 0

Exercise

e How does ABC look like after
the projection?
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Summary of Projection

. Two kind of projections:
- parallel and perspective

. We can project points onto the screen by
using projection matrices
. Canonical view volume is useful for telling if

the point is within the view volume
- parts outside must be clipped




Overview

e View transformation
— Parallel projection
— Perspective projection
— Canonical view volume

e Clipping
— Line / Polygon clipping



Projecting polygons and lines

e After projection, a line in 3D space
becomes a line in 2D space

e A polygon in 3D space becomes a
polygon in 2D space
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Clipping

e \We need to clip objects outside the canonical

view volume

¢ Clipping lines (Cohen-Sutherland algorithm)
e Clipping polygons (Sutherland-Hodgman

algorithm)
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Cohen-Sutherland algorithm
A systematic approach to clip lines
Input: The screen and a 2D line segment
(let’s start with 2D first)
Output: Clipped line segment
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Cohen-Sutherland 2D outcodes

1001 1000 1010
0001 0000 0010
0101 0100 0110

e The whole space is split into 9 regions
e Only the center region is visible
e Each region is encoded by four bits



Cohen-Sutherland 2D outcodes

4th bit 3rd bit
1001 1000 1010

T T I ISIRTRSG— S—————————
0001 0000 0010

oS E— ———
0101 : 0100 0110

— 4-bit code called: Outcode

— First bit : above top of window, y > ymax
— Second bit : below bottom, y < ymin

— Third bit : to right of right edge, x > xmax
— Fourth bit : to left of left edge, x < xmin



Cohen-Sutherland algorithm
While (true) {

1. Check if the line segment is trivial
accept/reject

2. Otherwise clip the edge and shorten
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Recap of AND/OR operators

OOR0O=0
OOR1=1 (if either is true, true)
10R1=1

OANDO=0

1ANDO=0 (if both are true, true)
1AND1=1



What is a trivial accept?

e All line vertices lie inside box — accept.
— Apply an ‘OR’ operation to the outcodes of two
endpoints




Cohen-Sutherland algorithm
While (true) {

1. Check if the line segment is trivial
/reject

2. Otherwise clip the edge and shorten
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What 1s a trivial reject?

All line vertices lie outside and on same side — reject.
Apply an ‘AND’ operation to the two endpoints
If not ‘0000°, then reject




Cohen-Sutherland 2D outcodes

1001 | i [1000 .””,,,,aaf‘ 1010
; .| 1000

0001
0001 0000 0010

0101 ;/’T" 0100

Logical AND between codes for 2 endpoints,
Reject line i1f non-zero — trivial rejection.

0000




What about this one?

1001 1000 1010

/

/

/ 0000 0010
0001 ¢

0101 0100 |o110

Logical AND between codes for 2 endpoints,
Reject line if non-zero — trivial rejection.




Cohen-Sutherland algorithm
While (true) {

2. Otherwise clip the edge and shorten
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Line Intersection.

e Clip the line by edges of the rectangle

e Select a clip edge based on the outcode, split
and feed the new segment on the side of the
rectangle back into algorithm

e Need to perform 4 intersection checks for
each line.
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Cohen-Sutherland algorithm

e How to extend to 3D?
— Also clipping the lines using front / back planes

e How many bits needed for the outcode?



Cohen-Sutherland algorithm

e How to extend to 3D?
— Also clipping the lines using front / back planes

e How many bits needed for the outcode?




Polygon Clipping:
Sutherland-Hodgman’s algorithm
e A systematic approach to clip polygons
e Input: A 2D polygon
e Output : a list of vertices of the clipped polygon
Polygons are clipped at each edge of the
window while traversing the polygon
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Sutherland-Hodgman’s algorithm

e The edges of the polygon are traversed
e The edges can be divided into four types

Inside | Outside
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Sutherland-Hodgman’s algorithm

For each edge of the clipping rectangle

For each edge of the polygon (connecting pi, pi+1)

—_—

e |f case 1 add p+1 to the output

e |f case 2 add interaction to output

e |f case 4 add intersection and p+1 to output
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Example

Right
Clip Left Top Clip Boundary
Boundary Clip

Boundary

Bottom Clip Boundary

© (d) (e)



Sutherland-Hodgman algorithm

e How to extend to 3D?



Summary

Projection
Perspective, parallel (orthographic) projection
Canonical view volume

Clipping
Cohen-Sutherland’s algorithm
Sutherland-Hodgmans’s algorithm



Another Good Modern Textbook

http://www.realtimerendering.com/

Akenine-Moller

Real-Time
Rendering

MThHirsd Edditicon



http://www.realtimerendering.com/
http://www.realtimerendering.com/

Readings

Foley et al. Chapter 6 — all of it,
e Particularly section 6.5
Introductory text, Chapter 6 — all of it,
e Particularly section 6.6
Akenine-Moller, Real-time Rendering Chapter
3.5
Clipping lines, polygons
e Foley et al. Chapter 3.12, 3.14

e http://www.cc.gatech.edu/grads/h/Hao-wei.
Hsieh/Haowei.Hsieh/mm.html



