Computer Graphics

Lecture 6
View Transformation and Clipping
Taku Komura
Overview

• View transformation
 – Recap of homogeneous transformation
 – Parallel projection
 – Perspective projection
 – Canonical view volume

• Clipping
 – Line / Polygon clipping
Procedure

1. Transform into camera coordinates. (done in Lecture 3)
2. Perform projection into *view volume* or *screen coordinates*.
3. Clip geometry outside the *view volume*.
View Projection: Topics

- Homogenous transformation
- Parallel projection
- Perspective projection
- Canonical view volume
Homogeneous Transformations

\[\mathbf{v} = M_{\text{proj}} M_{c \leftarrow w} M_{w \leftarrow l} \mathbf{v}_{l} \]

The projection matrix should be 4x4 matrices to allow general concatenation.
Homogeneous Coordinates

• Introduced to represent various transformations by multiplications (in Lecture 2)
• In homogenous coordinates, \((x, y, z, w)\) represent the same point when all elements are multiplied by the same factor
 – \((2,0,1,1)\) and \((4,0,2,2)\) are the same points
 – To bring back to Cartesian space, need to divide the other elements by the fourth element \(w\)
 • \((x, y, z, w) \rightarrow (x/w, y/w, z/w, 1)\)
Camera Coordinate System we use

(same as OpenGL)

Facing the $-z$ direction
X axis facing the right side
Y axis facing upwards
Parallel projections
(Orthographic projection)

• Specified by a direction of projection, rather than a point.
• Objects of same size appear at the same size after the projection
Parallel projection.

Orthographic Projection onto a plane at $z = 0$.

$$x_p = x, \ y_p = y, \ z = 0.$$
Perspective Projection

- Objects far away appear smaller, closer objects appear bigger
- Specified by a center of projection and the focal distance (distance from the eye to the projection plane)
Perspective projection

Centre of projection at the origin,
Projection plane at z=-d.
d: focal distance

Projective Plane.

P(x,y,z)

P_p(x_p,y_p,-d)
Perspective projection – simplest case.

From similar triangles:

\[
\frac{x_p}{d} = \frac{x}{-z}; \quad \frac{y_p}{d} = \frac{y}{-z}
\]

\[
\begin{align*}
x_p &= \frac{d \cdot x}{-z} = \frac{x}{-z/d}; \quad &y_p &= \frac{d \cdot y}{-z} = \frac{y}{-z/d}
\end{align*}
\]
Perspective projection.

\[
\begin{bmatrix} x_p & y_p & -d & 1 \end{bmatrix}^T = \begin{bmatrix} -d \frac{x}{z} & -d \frac{y}{z} & -d & 1 \end{bmatrix}^T = \begin{bmatrix} x & y & z & -\frac{z}{d} \end{bmatrix}^T
\]

Using homogeneous transformation, perspective projection can be represented as a 4x4 matrix multiplication:

\[
M_{\text{per}} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1/d & 0
\end{bmatrix}
\]
Perspective projection.

Projected point: \(P_p = [X \ Y \ Z \ W]^T \)

\[
P_p = M_{\text{per}} \cdot P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}
\]

\[
= [X \ Y \ Z \ W]^T = [x \ y \ z \ -z/d]^T
\]

\[
\left(\frac{X}{W}, \frac{Y}{W}, \frac{Z}{W} \right) = \left(\frac{x}{-z/d}, \frac{y}{-z/d}, -d \right)
\]
Alternative formulation.

Projection plane at $z = 0$
Centre of projection at $z = d$

$$\frac{x_p}{d} = \frac{x}{-z+d}; \quad \frac{y_p}{d} = \frac{y}{-z+d}$$

Multiply by d

$$x_p = \frac{d \cdot x}{-z+d} = \frac{x}{(-z/d)+1}; \quad y_p = \frac{d \cdot y}{-z+d} = \frac{y}{(-z/d)+1}$$
Alternative formulation.

Projection plane at $z = 0$, Centre of projection at $z = d$

Now we can allow $d \to \infty$

$\mathbf{M}_{\text{per}} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1/d & 1 \end{bmatrix}$
Exercise: where will the two points be projected onto?
Problems

- After projection, the depth information is lost
 - We need to preserve the depth information for hidden surface removal
- Objects behind the camera are projected to the front of the camera
3D View Volume

- The volume in which the visible objects exist
 - For parallel projection, view volume is a box.
 - For perspective projection, view volume is a frustum.
- The surfaces outside the view volume must be clipped
Canonica View Volume

• Checking if a point is within a frustum is costly
• We can transform the frustum view volume into a normalized canonical view volume
• By using the idea of perspective transformation

• Much easier to clip surfaces and calculate hidden surfaces
Transforming the View Frustum

• Let us define parameters \((l, r, b, t, n, f)\) that determines the shape of the frustum
• The view frustum starts at \(z=-n\) and ends at \(z=-f\), with \(0<n<f\)
• The rectangle at \(z=-n\) has the minimum corner at \((l, b, -n)\) and the maximum corner at \((r, t, -n)\)
Transforming View Frustum into a Canonical view-volume

The perspective canonical view-volume can be transformed to the parallel canonical view-volume with the following matrix:

\[
P_p = \begin{bmatrix}
\frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2n}{t-b} & \frac{r-l}{t+b} & 0 \\
0 & 0 & -\frac{f+n}{f-n} & -2fn \\
0 & 0 & -1 & f-n
\end{bmatrix}
\]

If \(z \in [-n,-f] (0 < n < f) \) then
Final step.

• Divide by w to get the 3-D Cartesian coordinates
• 3D Clipping
 • The Canonical view volume is defined by:

 \[-1 \leq x \leq 1, \ -1 \leq y \leq 1, \ -1 \leq z \leq 1\]

 • Simply need to check the (x,y,z) coordinates and see if they are within the canonical view volume
Exercise

If \(z \in \left[-n, -\frac{f}{n} \right] (0 < n < f) \) then

\[
P_p = \begin{bmatrix}
\frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2n}{t-b} & \frac{r-l}{t+b} & 0 \\
0 & 0 & \frac{t-b}{t-b} & 0 \\
0 & 0 & \frac{f+n}{f-n} & \frac{-2fn}{f-n} \\
0 & 0 & \frac{f-n}{f-n} & 0 \\
\end{bmatrix}
\]

- How does ABC look like after the projection?
If $z \in [-n, -f] (0 < n < f)$ then

$$P_p = \begin{bmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{t-b} & 0 \\ 0 & \frac{2n}{t-b} & \frac{r-l}{t-b} & 0 \\ 0 & 0 & \frac{f+n}{f-b} & -2fn \\ 0 & 0 & \frac{f-n}{f-b} & -1 \end{bmatrix}$$

$n = 1, f = 3, r = 1, l = -1, t = 1, b = -1$

$$P_p = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & -3 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & -3 \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 3 & 3 \\ 1 & 3 & 0 \\ -1 & -3 & -2 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 3 & 3 \\ 1 & 3 & 0 \\ -1 & 3 & 1 \\ 1 & 3 & 2 \end{bmatrix} = \begin{bmatrix} -1 & 1 & \frac{3}{2} \\ 1 & 1 & 0 \\ -1 & 1 & \frac{1}{2} \\ 1 & 1 & 1 \end{bmatrix}$$

projected
Summary of Projection

- Two kind of projections:
 - parallel and perspective
- We can project points onto the screen by using projection matrices
- Canonical view volume is useful for telling if the point is within the view volume
 - parts outside must be clipped
Overview

• View transformation
 – Parallel projection
 – Perspective projection
 – Canonical view volume

• Clipping
 – Line / Polygon clipping
Projecting polygons and lines

- After projection, a line in 3D space becomes a line in 2D space
- A polygon in 3D space becomes a polygon in 2D space
Clipping

• We need to clip objects outside the canonical view volume

• Clipping lines (Cohen-Sutherland algorithm)
• Clipping polygons (Sutherland-Hodgman algorithm)
Cohen-Sutherland algorithm
A systematic approach to clip lines
Input: The screen and a 2D line segment
(let’s start with 2D first)
Output: Clipped line segment
Cohen-Sutherland 2D outcodes

- The whole space is split into 9 regions
- Only the center region is visible
- Each region is encoded by four bits
Cohen-Sutherland 2D outcodes

- 4-bit code called: \textit{Outcode}
- First bit: above top of window, \(y > y_{\text{ymax}} \)
- Second bit: below bottom, \(y < y_{\text{ymin}} \)
- Third bit: to right of right edge, \(x > x_{\text{xmax}} \)
- Fourth bit: to left of left edge, \(x < x_{\text{xmin}} \)
Cohen-Sutherland algorithm

While (true) {

1. Check if the line segment is trivial
 accept/reject

2. Otherwise clip the edge and shorten

}
Recap of AND/OR operators

0 OR 0 = 0
0 OR 1 = 1 (if either is true, true)
1 OR 1 = 1

0 AND 0 = 0
1 AND 0 = 0 (if both are true, true)
1 AND 1 = 1
What is a trivial accept?

- All line vertices lie inside box → accept.
 - Apply an ‘OR’ operation to the outcodes of two endpoints
Cohen-Sutherland algorithm

While (true) {

1. Check if the line segment is trivial
 accept/reject

2. Otherwise clip the edge and shorten

}
What is a trivial reject?

All line vertices lie outside and on same side → reject.
Apply an ‘AND’ operation to the two endpoints
If not ‘0000’, then reject
Cohen-Sutherland 2D outcodes

Logical AND between codes for 2 endpoints,
Reject line if non-zero – trivial rejection.
What about this one?

Logical AND between codes for 2 endpoints, Reject line if non-zero – trivial rejection.
Cohen-Sutherland algorithm

While (true) {

1. Check if the line segment is trivial
 accept/reject

2. Otherwise clip the edge and shorten

}
Line Intersection.

- Clip the line by edges of the rectangle
- Select a clip edge based on the outcode, split and feed the new segment on the side of the rectangle back into algorithm
- Need to perform 4 intersection checks for each line.
Cohen-Sutherland algorithm

• How to extend to 3D?
 – Also clipping the lines using front / back planes
• How many bits needed for the outcode?
Cohen-Sutherland algorithm

• How to extend to 3D?
 – Also clipping the lines using front / back planes
• How many bits needed for the outcode?
Polygon Clipping:
Sutherland-Hodgman’s algorithm

- A systematic approach to clip polygons
- Input: A 2D polygon
- Output: a list of vertices of the clipped polygon

Polygons are clipped at each edge of the window while traversing the polygon
Sutherland-Hodgman’s algorithm

- The edges of the polygon are traversed
- The edges can be divided into four types

- **Case 1**: Output Vertex
- **Case 2**: Output Intersection
- **Case 3**: No output.
- **Case 4**: First Output
Sutherland-Hodgman’s algorithm

For each edge of the clipping rectangle
For each edge of the polygon (connecting pi, $pi+1$)

- If case 1 add $p+1$ to the output
- If case 2 add interaction to output
- If case 4 add intersection and $p+1$ to output
Example
Sutherland-Hodgman algorithm

• How to extend to 3D?
Summary

Projection
 Perspective, parallel (orthographic) projection
 Canonical view volume

Clipping
 Cohen-Sutherland’s algorithm
 Sutherland-Hodgmans’s algorithm
Another Good Modern Textbook

http://www.realtimerendering.com/

Akenine-Moller
Readings

• Foley et al. Chapter 6 – all of it,
 • Particularly section 6.5
• Introductory text, Chapter 6 – all of it,
 • Particularly section 6.6
• Akenine-Moller, Real-time Rendering Chapter 3.5
• Clipping lines, polygons
 • Foley et al. Chapter 3.12, 3.14