
 

Computer Graphics

Lecture 6
View Transformation and Clipping

Taku Komura



Overview

• View transformation
– Recap of homogeneous transformation
– Parallel projection
– Perspective projection
– Canonical view volume

• Clipping
– Line / Polygon clipping



 

Procedure
1. Transform into camera coordinates. (done in 

Lecture 3)
2. Perform projection into view volume or 

screen coordinates.
3. Clip geometry outside the view volume.



 

View Projection : Topics
●Homogenous transformation
●Parallel projection
●Perspective projection
●Canonical view volume



Homogeneous Transformations

v=Mproj Mc←w　Mw←l vl

The projection matiix should be 4x4 matrices
 to allow general concatenation



Homogeneous Coordinates



 

Camera Coordinate System we use

(same as OpenGL)
y

z

x
Facing the –z direction
X axis facing the right side
Y axis facing upwards



 

Parallel projections 
(Orthographic projection)

• Specified by a direction of projection, rather 
than a point.

• Objects of same size appear at the same size 
after the projection



 

Parallel projection.
Orthographic Projection onto a plane at z = 0.

xp = x , yp = y , z = 0.



 

Perspective Projection
• Objects far away appear smaller, closer objects 

appear bigger
• Specified by a center of projection and the focal 

distance (distance from the eye to the projection 
plane) 



 

Perspective projection

d

y

z

Projectio
n
Plane.

P(x,y,
z)

Pp(xp,yp,-
d)

Centre of projection at the 
origin,
Projection plane at z=-d.
d: focal distance

x













 

Alternative formulation.

z

P(x,y,
z)

d

x

x
p

z

P(x,y,
z)

d

y

y
p

Projection plane at z = 
0,
Centre of projection at
            z  = d

Now we can allow 
d→∞



Exercise: where will the two

 points be projected onto?



 

Problems
• After projection, the depth information is lost 

• We need to preserve the depth information for 
hidden surface removal

• Objects behind the camera are projected to the front of 
the camera



3D View Volume

• The volume in which the visible objects exist
– For parallel projection, view volume is a box.
– For perspective projection, view volume is a 

frustum.

• The surfaces outside the view volume must 
be clipped



Canonical View Volume

• Checking if a point is within a frustum is costly
• We can transform the frustum view volume into a 

normalized canonical view volume
• By using the idea of perspective transformation

• Much easier to clip surfaces and calculate hidden 
surfaces



 

Transforming the View Frustum
• Let us define parameters (l,r,b,t,n,f) that 

determines the shape of the frustum
• The view frustum starts at z=-n and ends at 

z=-f, with 0<n<f 
• The rectangle at z=-n has the minimum 

corner at (l,b,-n) and the maximum corner at 
(r,t,-n)



 

Transforming View Frustum into
  a Canonical view-volume

• The perspective canonical view-volume can be transformed 
to the parallel canonical view-volume with the following 
matrix:



 

Final step.
• Divide by w to get the 3-D Cartesian coordinates
• 3D Clipping

• The Canonical view volume is defined by:
                 -1≤x ≤1, -1 ≤y ≤1 , -1 ≤z ≤1

• Simply need to check the (x,y,z) coordinates and see if 
they are within the canonical view volume

 



Exercise

• How does ABC look like after 
the projection?



A   B   C            projected
A   B   C            



Summary of Projection

● Two kind of projections: 
○ parallel and perspective

● We can project points onto the screen by 
using projection matrices  

● Canonical view volume is useful for telling if 
the point is within the view volume

○ parts outside must be clipped



Overview

• View transformation
– Parallel projection
– Perspective projection
– Canonical view volume

• Clipping
– Line / Polygon clipping



Projecting polygons and lines

• After projection, a line in 3D space 
becomes a line in 2D space

• A polygon in 3D space becomes a 
polygon in 2D space



Clipping

• We need to clip objects outside the canonical 

   view volume

• Clipping lines (Cohen-Sutherland algorithm)

• Clipping polygons (Sutherland-Hodgman 

    algorithm)



Cohen-Sutherland algorithm
A systematic approach to clip lines

Input:  The screen and a 2D line segment 

  (let’s start with 2D first)

Output:  Clipped line segment



Cohen-Sutherland 2D outcodes

• The whole space is split into 9 regions
• Only the center region is visible 
• Each region is encoded by four bits



Cohen-Sutherland 2D outcodes

– 4-bit code called:   Outcode
– First bit : above top of window, y > ymax
– Second bit : below bottom, y < ymin
– Third bit : to right of right edge, x > xmax
– Fourth bit : to left of left edge, x < xmin

1st bit

2nd bit

       4th bit                       3rd bit



Cohen-Sutherland algorithm
While (true) {

1. Check if the line segment is trivial 

      accept/reject

2.  Otherwise clip the edge and shorten 

}



Recap of AND/OR operators

0 OR 0 = 0

0 OR 1 = 1        (if either is true, true)

1 OR 1 = 1

0 AND 0 = 0

1 AND 0 = 0     (if both are true, true)

1 AND 1 = 1



What is a trivial accept?

• All line vertices lie inside box → accept.
– Apply an ‘OR’ operation to the outcodes of two 

endpoints



Cohen-Sutherland algorithm
While (true) {

1. Check if the line segment is trivial 

      accept/reject

2.  Otherwise clip the edge and shorten 

}



All line vertices lie outside and on same side → reject.
Apply an ‘AND’ operation to the two endpoints
If not ‘0000’, then reject 
Can be checked by the ‘and’ operation of the two end points

What is a trivial reject?



0000

0100

0001

1001 1000 1010

0010

01100101

1000

0000
0000

Logical AND between codes for 2 endpoints,
Reject line if non-zero – trivial rejection. 

0001

Cohen-Sutherland 2D outcodes



0000

0100

0001

1001 1000 1010

0010

01100101

Logical AND between codes for 2 endpoints,
Reject line if non-zero – trivial rejection. 

What about this one?



Cohen-Sutherland algorithm
While (true) {

1. Check if the line segment is trivial 

      accept/reject

2.  Otherwise clip the edge and shorten 

}



Line Intersection.

• Clip the line by edges of the rectangle
• Select a clip edge based on the outcode, split 

and feed the  new segment on the side of the 
rectangle back into algorithm 

• Need to perform 4 intersection checks for 
each line.



Cohen-Sutherland algorithm

• How to extend to 3D?
– Also clipping the lines using front / back planes

• How many bits needed for the outcode?  



Cohen-Sutherland algorithm

• How to extend to 3D?
– Also clipping the lines using front / back planes

• How many bits needed for the outcode?  



Polygon Clipping:
Sutherland-Hodgman’s algorithm

• A systematic approach to clip polygons
• Input :  A 2D polygon 
• Output : a list of vertices of the clipped polygon 

Polygons are clipped at each edge of the 

   window while traversing the polygon



Sutherland-Hodgman’s algorithm

• The edges of the polygon are traversed 
• The edges can be divided into four types

Inside Outside Inside Outside Inside Outside Inside Outside

Case 3
No 

output.
Case 1

Output
Vertex

Case 2.

Output
Intersection

Case 4

Second
Output

First
Output



Sutherland-Hodgman’s algorithm

For each edge of the clipping rectangle
For each edge of the polygon (connecting pi, pi+1)  

• If case 1  add p+1 to the output
• If case 2 add interaction to output
• If case 4 add intersection and p+1 to output

Inside Outside Inside Outside Inside Outside Inside Outside

Case 3
No 

output.
Case 1

Output
Vertex

Case 2.

Output
Intersection

Case 4

Second
Output

First
Output



Example



Sutherland-Hodgman algorithm

• How to extend to 3D?



Summary

Projection 

Perspective, parallel (orthographic) projection

Canonical view volume

Clipping

Cohen-Sutherland’s algorithm

 Sutherland-Hodgmans’s algorithm



Another Good Modern Textbook

http://www.realtimerendering.com/

Akenine-Moller

http://www.realtimerendering.com/
http://www.realtimerendering.com/


 

Readings

• Foley et al. Chapter 6 – all of it,
• Particularly section 6.5

• Introductory text, Chapter 6 – all of it,
• Particularly section 6.6

• Akenine-Moller, Real-time Rendering Chapter 
3.5

• Clipping lines, polygons
• Foley et al. Chapter 3.12, 3.14
• http://www.cc.gatech.edu/grads/h/Hao-wei.

Hsieh/Haowei.Hsieh/mm.html


