Computer Graphics

Lecture 5
View Transformation and Clipping

Taku Komura

Overview

e View transformation
— Recap of homogeneous transformation
— Parallel projection
— Perspective projection
— Canonical view volume
e Clipping
— Line / Polygon clipping

Procedure

1. Transform 1nto camera coordinates. (done 1n
Lecture 3)

2. Perform projection into view volume or
screen coordinates.

3. Clip geometry outside the view volume.

View Projection : Topics

e Homogenous transformation
eParallel projection

e Perspective projection

e Canonical view volume

Homogeneous Transformations

\ % :Mroj M C—wW M wel VI

L . Local.
Projection World to Loc-glto coordin
matrix camera WOr ates

matrix maftrix

A f«'f'.- -5

L X ¥ o2y) [AT A
. Sl {xpz)
.-': I i . =
¥ -
L b

{.H_,llr;‘..[' J'"

The projection matrix should be 4x4 matrices

to allow general concatenation

Homogeneous Coordinates

ntroduced to represent various transformations
oy multiplications (in Lecture 2)

n homogenous coordinates, (X,y,z,w) represent
the same point when all elements are multiplied
by the same factor

—(2,0,1,1) and (4,0,2,2) are the same points

— To bring back to Cartesian space, need to divide the
other elements by the fourth element w

* (x,y7,Z, W) = (x/w, y/w, z/w, 1)

Camera Coordinate System we use

(same as OpenGL)

Screen

Y

Y

|

X

IN

Facing the —z direction

/ X axis facing the right side

Y axis facing upwards

I

Parallel projections
(Orthographic projection)

» Specified by a direction of projection, rather
than a point.

* Objects of same size appear at the same size
after the projection

Parallel projection.

Orthographic Projection onto a plane at z = 0.

X =x,yp=y,z=0.

p

10
o v 2|0
=l g
/1'};‘ y —O 0

=4
e 1 0 0 0]
prot. siow 01 0 0
000 O
000 1

o O O O

Perspective Projection

* Objects far away appear smaller, closer objects
appear bigger

» Specified by a center of projection and the focal
distance (distance from the eye to the projection
plane)

Perspective projection

Centre of projection at the

origin,
Projection plane at z=-d. Projectio
d: focal distance n

Y Plane.

/ ;)(X,Y,Z

Perspective proglectlon — simplest

From similar triangles:

I;J'_ X \ }rp }1

SCICcll

" P(x,y.z)
P 4
—% =ild ‘ —
- &
P(x.y.z) % - i
—
PF{xP'ﬁ}rFﬂ-d}
¥p P(x.y,z)
}f 1

SCIecn

Perspective projection.

I
i b -é l]r=[_d-% #d'% —d 1} =[J: ¥ Z —*%J

Using homogeneous transformation, perspective projection

can be represented as a 4x4 matrix multiplication :
18 0

0
0

Mﬁ’r
100 1 0
0

Perspective projection.

Projected point: P, =[X Y Z W[

1 0 0 Of[x
g 1 & 45 |=»
P=M -P= .
P d 0O 0 1 0]]z
0 0 -1d O][1]

=[x v z wl=[x y z -z/df

X ¥ Z)1 [X y i
w W W ~ald’ —gld

Alternative formulation.

B :
+ -
>

< P(x.y.z) E\T\'
E : . e P(x.v.z)

« > Ty
d

Projection plane at z =0
Centre of projection at

=1 .. B . Jp.. ¥
d -z+d d -z+d
Multply by d
d-x X da-v y
X = — % }-"P —_— '}' =

R —z4+d (ztd)+1 —z+d (=z/d)+1

Alternative formulation.

Xp

P(x,y,z)

]

ol

4]

Projection plane at z = 0,

Centre of projection at
z =d

Now we can allow d—

M,

er |

P(x.,y,z)

Exercise: where will the two

points be projected onto?

screen

<

d=1

(-1,-1,-1)

/
-
r
£
i
s
£
'd
s
I.r'

(-2,2,-2)

Problems

 After projection, the depth information 1s lost
* We need to preserve the depth information for
hidden surface removal
* Objects behind the camera are projected to the front of
the camera

screen

S

3D View Volume

e The volume in which the visible objects exist
— For parallel projection, view volume is a box.
— For perspective projection, view volume is a
frustum.

e The surfaces outside the view volume must
be clipped

Canonical View Volume

Checking if a point is within a frustum is costly
We can transform the frustum view volume into a
normalized canonical view volume

By using the idea of perspective transformation

Much easier to clip surfaces and calculate hidden
surfaces

Transforming the View Frustum

* Let us define parameters (1,r,b,t,n,f) that
determines the shape of the frustum

* The view frustum starts at z=-n and ends at
z=-1, with O<n<f

* The rectangle at z=-n has the minimum
corner at (1,b,-n) and the maximum corner at

(r,t,-n)

Transforming View Frustum into
a Canonical view-volume

The perspective canonical view-volume can be transformed
to the parallel canonical view-volume with the following

matrix:

If ze[-n—f1(0<n< f)then
Pjgi 0 r+1

- 0
r—I1 r—I
0 2n t+b 0
P = t—=b t-b
0§ _Jfrm =2
F=m [f-n
i 0 0 -1 0 |

Final step.

* Divide by w to get the 3-D Cartesian coordinates
* 3D Clipping
* The Canonical view volume 1s defined by:
-1<x<1,-1<y<1l,-1<z<1

« Simply need to check the (x,y,z) coordinates and see 1f
they are within the canonical view volume

If ze[-n—f10<n< f)then

[2n
r—I[
0

g LI 0
r—1
2n t+b 0
t—b t—b
_f+n =2
f=m [f-n
0 -1 0

Exercise

e How does ABC look like after
the projection?

n=Lf=3
(1 0
P=01
g 9
0 0

p=Lil==11t
0 0]
0 0
5 -3
-1 0

If ze[-n—fl(0<n< f)then
- .
=¥ 0 il 0
r—1 1 r—1
- 0 2n t+b 0
= P = t—b t-b
0 0 _Jf+n =2fn
—n f-n
S 0 0 -1 g
Lb=~1
A B C projected
L1 ABC
'1{][}{}—133--—]33-_11%
01 0 01 3 0] (1 30| | 1 0
0 0 -2 -3§-1 -3 -2| |-1 3 1] |74 1
g B pfa E 3 I B3 ey 5

Summary of Projection

. Two kind of projections:
- parallel and perspective

. We can project points onto the screen by
using projection matrices
. Canonical view volume is useful for telling if

the point is within the view volume
- parts outside must be clipped

Some side story

U SCHOOL OF COMPUTING
THE UNIVERSITY OF UTAH

http://www.cs.utah.edu/about/history/

Graduates/Faculties include
Ivan Sutherland
Ed Catmull

University of Utah

Alan Kay

Like the holy place
of computer
graphics.

Henri Gouraud

Bui Tuong Phong

Jim Clark

Jim Blinn

Jim Kajiya

P 2‘* X A R . EVANS & SUTHERLAND — Ed Catmull
E i'r'%ffi'?f Word u and many others

SiliconGraphics PGI’fGCt

CIRRLUIS LOGKC

Overview

e View transformation
— Parallel projection
— Perspective projection
— Canonical view volume

e Clipping
— Line / Polygon clipping

Projecting polygons and lines

e After projection, a line in 3D space
becomes a line in 2D space

e A polygon in 3D space becomes a
polygon in 2D space

=

Clipping

e \We need to clip objects outside the canonical

view volume

¢ Clipping lines (Cohen-Sutherland algorithm)
e Clipping polygons (Sutherland-Hodgman

algorithm)

/////// "7_,

/ Clip Rectangle

Cohen-Sutherland algorithm
A systematic approach to clip lines
Input: The screen and a 2D line segment
(let’s start with 2D first)
Output: Clipped line segment

/.//// T//_

-

Cohen-Sutherland 2D outcodes

1001 1000 1010
0001 0000 0010
0101 ’ 0100 0110

e The whole space is split into 9 regions
e Only the center region is visible
e Each region is encoded by four bits

Cohen-Sutherland 2D outcodes

4th bit 3rd bit
1001 1000 1010

LT
0001 0000 0010

7 R
0101 ’ 0100 0110

— 4-bit code called: Outcode

— First bit : above top of window, y > ymax
— Second bit : below bottom, y < ymin

— Third bit : to right of right edge, x > xmax
— Fourth bit : to left of left edge, x < xmin

Cohen-Sutherland algorithm
While (true) {

1. Check if the line segment is trivial
accept/reject

2. Otherwise clip the edge and shorten

J
S S
////// c/ /

/ /’:

AN

Recap of AND/OR operators

OOR0O=0
OOR1=1 (if either is true, true)
10R1=1

OANDO=0

1ANDO=0 (if both are true, true)
1AND1=1

What is a trivial accept?

e All line vertices lie inside box — accept.
— Apply an ‘OR’ operation to the outcodes of two
endpoints

Cohen-Sutherland algorithm
While (true) {

1. Check if the line segment is trivial
/reject

2. Otherwise clip the edge and shorten

}/ /// ~ S iﬁ

"

What 1s a trivial reject?

All line vertices lie outside and on same side — reject.
Apply an ‘AND’ operation to the two endpoints
If not ‘0000°, then reject

Cohen-Sutherland 2D outcodes

1001 | i [1000 .””,,,,aaf‘ 1010
; .| 1000

0001
0001 0000 0010

0101 ;/’T" 0100

Logical AND between codes for 2 endpoints,
Reject line i1f non-zero — trivial rejection.

0000

What about this one?

1001 1000 1010

/

/

/ 0000 0010
0001 ¢

0101 0100 |o110

Logical AND between codes for 2 endpoints,
Reject line if non-zero — trivial rejection.

Cohen-Sutherland algorithm
While (true) {

2. Otherwise clip the edge and shorten

iy TF

-~ —s

Line Intersection.

e Clip the line by edges of the rectangle

e Select a clip edge based on the outcode, split
and feed the new segment on the side of the
rectangle back into algorithm

>
pod

A P

Cohen-Sutherland algorithm

e How to extend to 3D?
— Also clipping the lines using front / back planes

e How many bits needed for the outcode?

Polygon Clipping:
Sutherland-Hodgman’s algorithm
e A systematic approach to clip polygons
e Input: A 2D polygon
e Output : a list of vertices of the clipped polygon
Polygons are clipped at each edge of the
window while traversing the polygon

||||||||||||

Sutherland-Hodgman’s algorithm

e The edges of the polygon are traversed
e The edges can be divided into four types

Inside | Outside

[

Case 1

Inside ||| Outside

Inside | Outside

Inside | Outside

T

/

Output
Intersection

Case 2.

gl

Case 3
No
utput

F

o\

Second First
Output Output

Case 4

Sutherland-Hodgman’s algorithm

For each edge of the clipping rectangle

For each edge of the polygon (connecting pi, pi+1)

—_—

e |f case 1 add p+1 to the output

e |f case 2 add interaction to output

e |f case 4 add intersection and p+1 to output

Insideg

Outside

Inside

Outside

Insideg

Outside

Insidd QOutside

Output
Vertex

U CPC

Output

Intersect]

Case 1

Case 3
No

output.

Second
Output

1

First

Case

]

utput

l_'.

Example

N

g

Bottom Clip Boundary

[c]

Left
Clip
Boundary

Top Clip Boundary

N
- |

(d)

Sutherland-Hodgman algorithm

e How to extend to 3D?

Summary

Projection
Perspective, parallel (orthographic) projection
Canonical view volume

Clipping
Cohen-Sutherland’s algorithm
Sutherland-Hodgmans’s algorithm

Readings

Foley et al. Chapter 6 — all of it,
e Particularly section 6.5
Introductory text, Chapter 6 — all of it,
e Particularly section 6.6
Akenine-Moller, Real-time Rendering Chapter
3.5
Clipping lines, polygons
e Foley et al. Chapter 3.12, 3.14

e http://www.cc.gatech.edu/grads/h/Hao-wei.Hsieh
/Haowei.Hsieh/mm.html|

