Computer Graphics

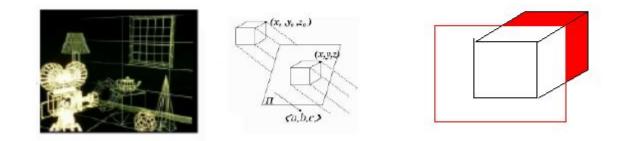
Lecture 5 View Transformation and Clipping Taku Komura

Overview

- View transformation
 - Recap of homogeneous transformation
 - Parallel projection
 - Perspective projection
 - Canonical view volume
- Clipping
 - Line / Polygon clipping

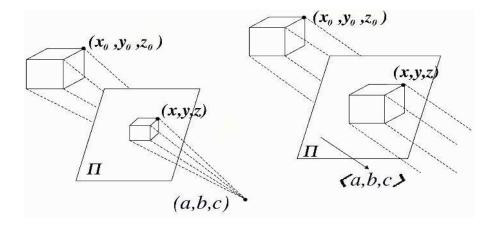
Procedure

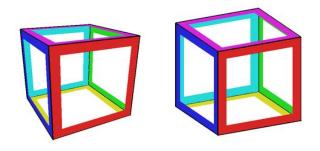
- 1. Transform into camera coordinates. (done in Lecture 3)
- 2. Perform projection into view volume or screen coordinates.
- 3. Clip geometry outside the view volume.



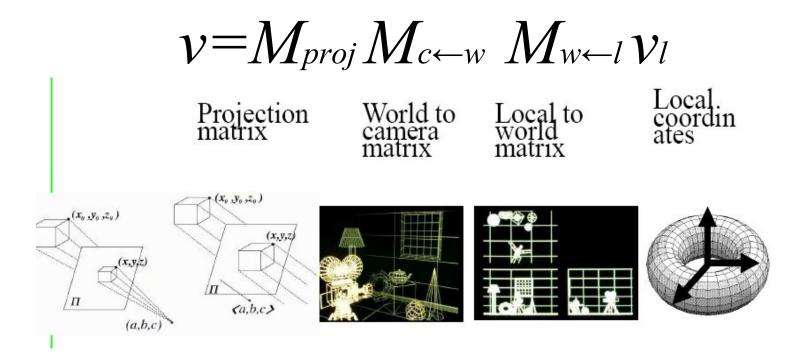
View Projection : Topics

- •Homogenous transformation
- •Parallel projection
- •Perspective projection
- •Canonical view volume





Homogeneous Transformations

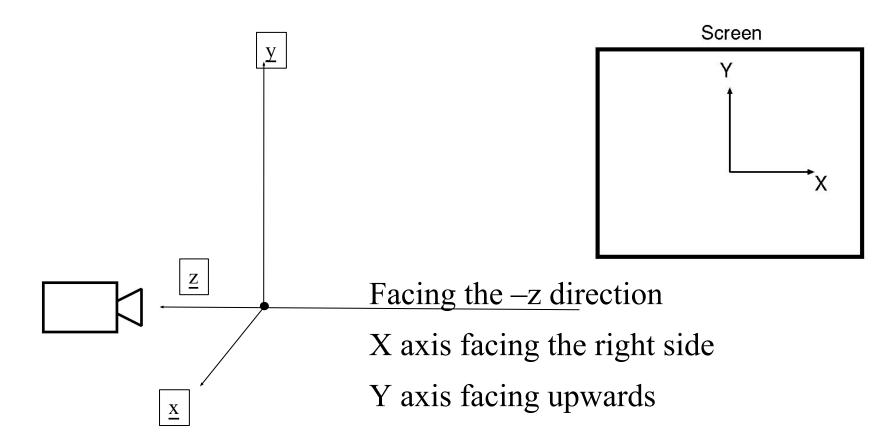


The projection matrix should be 4x4 matrices to allow general concatenation

Homogeneous Coordinates

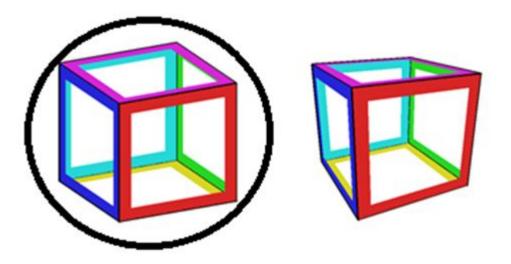
- Introduced to represent various transformations by multiplications (in Lecture 2)
- In homogenous coordinates, (x,y,z,w) represent the same point when all elements are multiplied by the same factor
 - (2,0,1,1) and (4,0,2,2) are the same points
 - To bring back to Cartesian space, need to divide the other elements by the fourth element w
 - $(x, y, z, w) \rightarrow (x/w, y/w, z/w, 1)$

Camera Coordinate System we use (same as OpenGL)



Parallel projections (Orthographic projection)

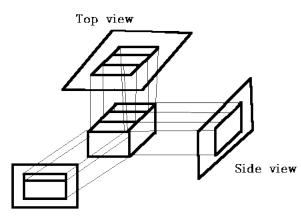
- Specified by a direction of projection, rather than a point.
- Objects of same size appear at the same size after the projection

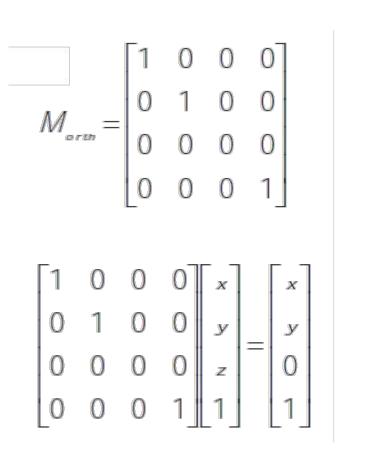


Parallel projection.

Orthographic Projection onto a plane at z = 0.

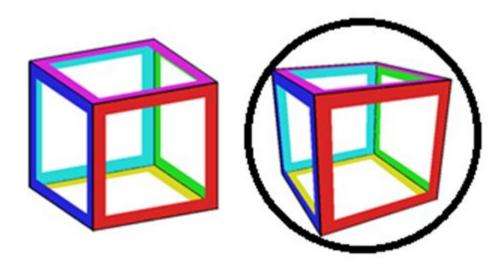
$$x_{p} = x, y_{p} = y, z = 0.$$



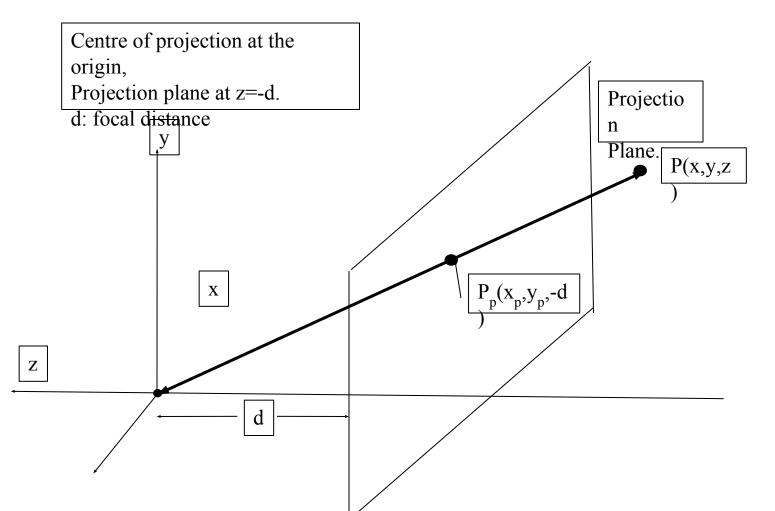


Perspective Projection

- Objects far away appear smaller, closer objects appear bigger
- Specified by a center of projection and the focal distance (distance from the eye to the projection plane)



Perspective projection

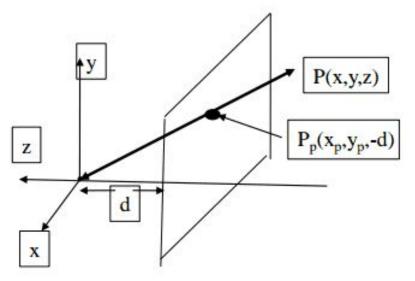


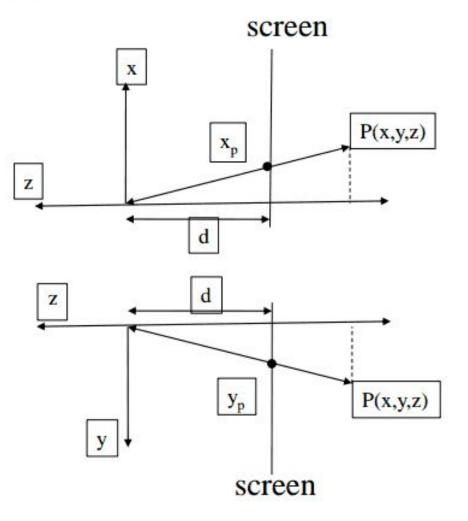
Perspective projection – simplest case.

From similar triangles:

$$\frac{x_p}{d} = \frac{x}{-z}; \ \frac{y_p}{d} = \frac{y}{-z}$$

$$x_p = \frac{d \cdot x}{-z} = \frac{x}{-z/d}; \quad y_p = \frac{d \cdot y}{-z} = \frac{y}{-z/d}$$





Perspective projection.

$$\begin{bmatrix} x_p & y_p & -d & 1 \end{bmatrix}^T = \begin{bmatrix} -d \cdot x_2 & -d \cdot y_2 & -d & 1 \end{bmatrix}^T = \begin{bmatrix} x & y & z & -z_d \end{bmatrix}^T$$

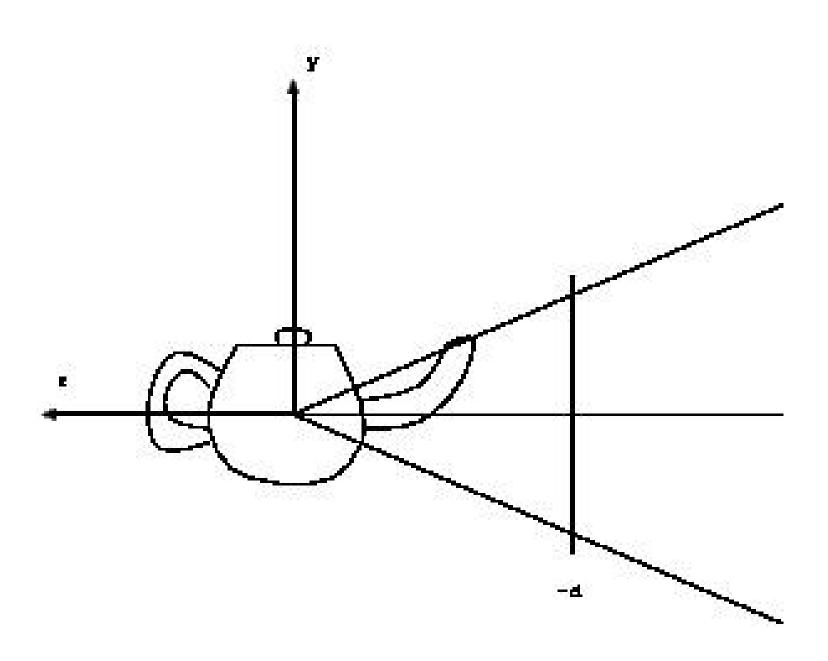
Using homogeneous transformation, perspective projection can be represented as a 4x4 matrix multiplication :

$$M_{per} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix}$$

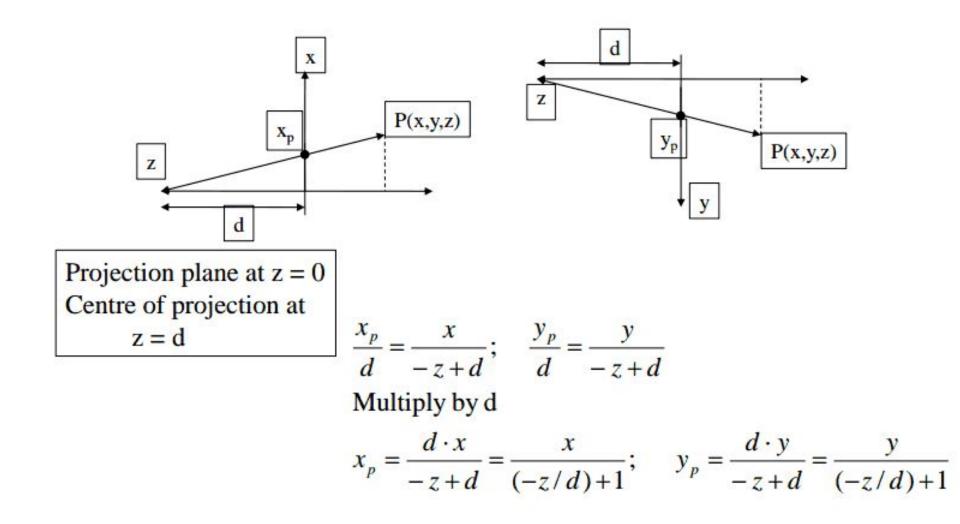
Perspective projection.

Projected point : $P_p = \begin{bmatrix} X & Y & Z & W \end{bmatrix}^T$ $P_p = M_{per} \cdot P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$

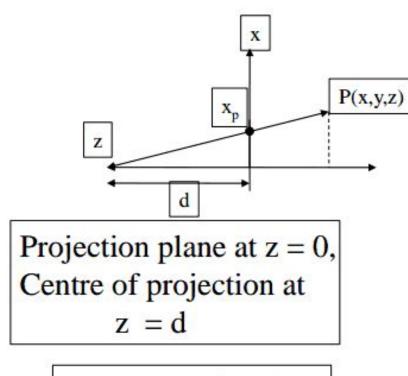
$$= \begin{bmatrix} X & Y & Z & W \end{bmatrix}^{T} = \begin{bmatrix} x & y & z & -z/d \end{bmatrix}^{T}$$
$$\left(\frac{X}{W}, \quad \frac{Y}{W}, \quad \frac{Z}{W}\right) = \left(\frac{x}{-z/d}, \quad \frac{y}{-z/d}, \quad -d\right)$$



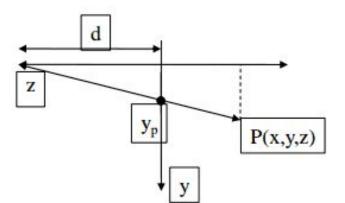
Alternative formulation.



Alternative formulation.



Now we can allow $d \rightarrow \infty$

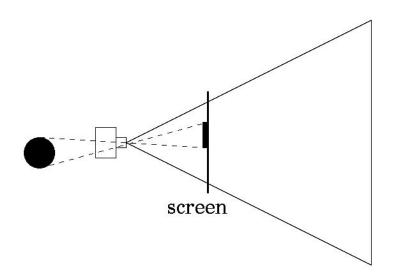


$$M_{per} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1/d1 \end{bmatrix}$$

Exercise: where will the two points be projected onto? screen (-2, 2, -2) $M_{per} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1/d \end{bmatrix}$ (-1,-1,-1) d=1

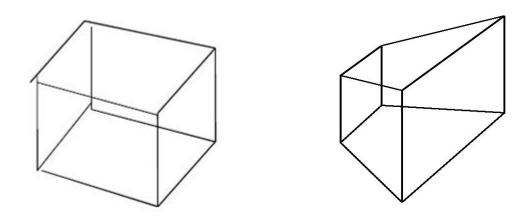
Problems

- After projection, the depth information is lost
 - We need to preserve the depth information for hidden surface removal
- Objects behind the camera are projected to the front of the camera



3D View Volume

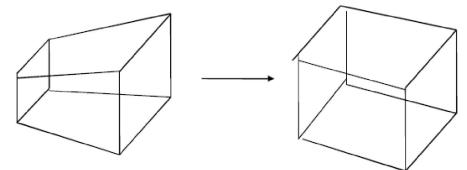
- The volume in which the visible objects exist
 - For parallel projection, view volume is a box.
 - For perspective projection, view volume is a *frustum*.
- The surfaces outside the view volume must be clipped



Canonical View Volume

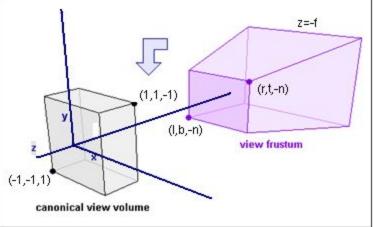
- Checking if a point is within a frustum is costly
- We can transform the frustum view volume into a normalized canonical view volume
- By using the idea of perspective transformation

 Much easier to clip surfaces and calculate hidden surfaces



Transforming the View Frustum

- Let us define parameters (l,r,b,t,n,f) that determines the shape of the frustum
- The view frustum starts at z=-n and ends at z=-f, with 0<n<f
- The rectangle at z=-n has the minimum corner at (l,b,-n) and the maximum corner at (r,t,-n)



Transforming View Frustum into a Canonical view-volume

The perspective canonical view-volume can be transformed to the parallel canonical view-volume with the following matrix:

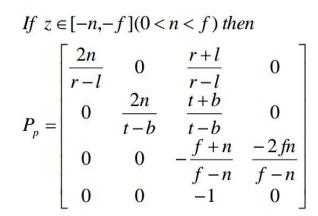
$$P_{p} = \begin{bmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0\\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0\\ 0 & 0 & -\frac{f+n}{f-n} & \frac{-2fn}{f-n}\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Final step.

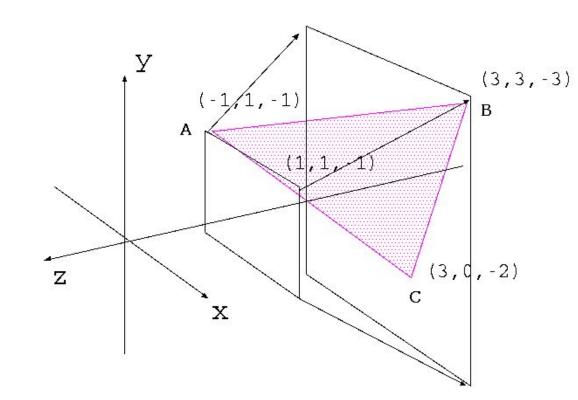
- Divide by w to get the 3-D Cartesian coordinates
- 3D Clipping
 - The Canonical view volume is defined by:

 $-1 \le x \le 1, -1 \le y \le 1, -1 \le z \le 1$

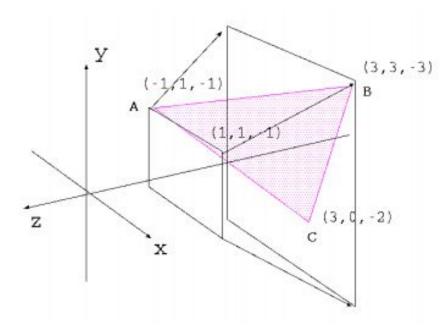
• Simply need to check the (x,y,z) coordinates and see if they are within the canonical view volume



Exercise



• How does ABC look like after the projection?



$$If \ z \in [-n, -f](0 < n < f) \ then$$
$$P_p = \begin{bmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0\\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0\\ 0 & 0 & -\frac{f+n}{f-n} & \frac{-2fn}{f-n}\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

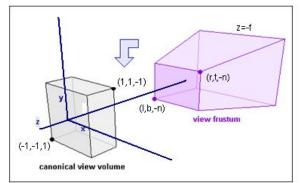
$$n = 1, f = 3, r = 1, l = -1, t = 1, b = -1$$

$$P_{p} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & -3 \\ 0 & 0 & -1 & 0 \end{bmatrix} \qquad A B C \qquad \text{projected}$$

$$I = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -2 & -3 \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 3 & 3 \\ 1 & 3 & 0 \\ -1 & -3 & -2 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 3 & 3 \\ 1 & 3 & 0 \\ -1 & 3 & 1 \\ 1 & 3 & 2 \end{bmatrix} = \begin{bmatrix} -1 & 1 & \frac{3}{2} \\ 1 & 1 & 0 \\ -1 & 1 & \frac{1}{2} \\ 1 & 1 & 1 \end{bmatrix}$$

Summary of Projection

- Two kind of projections:
 - parallel and perspective
- We can project points onto the screen by using projection matrices
- Canonical view volume is useful for telling if the point is within the view volume
 - parts outside must be clipped



Some side story

Graduates/Faculties include

http://www.cs.utah.edu/about/history/

University of Utah Like the holy place of computer graphics.

Ivan Sutherland

Ed Catmull

Alan Kay

Henri Gouraud

Bui Tuong Phong

Jim Clark

Jim Blinn

Jim Kajiya

Ed Catmull

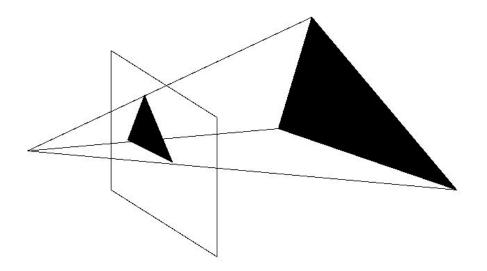
and many others

Overview

- View transformation
 - Parallel projection
 - Perspective projection
 - Canonical view volume
- Clipping
 - Line / Polygon clipping

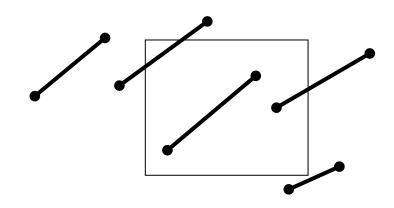
Projecting polygons and lines

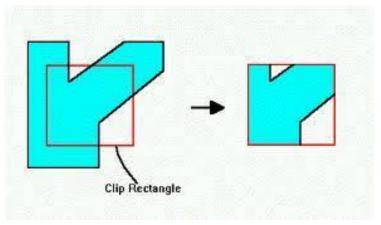
- After projection, a line in 3D space becomes a line in 2D space
- A polygon in 3D space becomes a polygon in 2D space



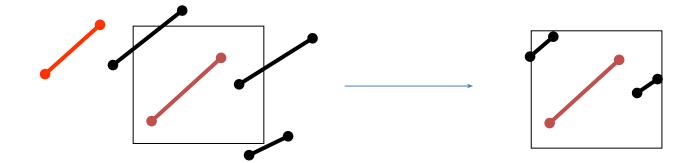
Clipping

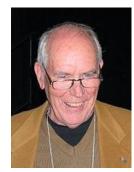
- We need to clip objects outside the canonical view volume
- Clipping lines (Cohen-Sutherland algorithm)
- Clipping polygons (Sutherland-Hodgman algorithm)



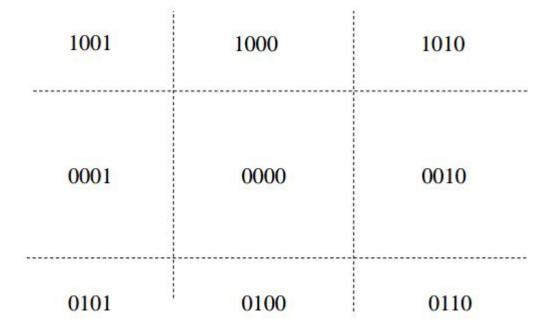


Cohen-Sutherland algorithm A systematic approach to clip lines Input: The screen and a 2D line segment (let's start with 2D first) Output: Clipped line segment

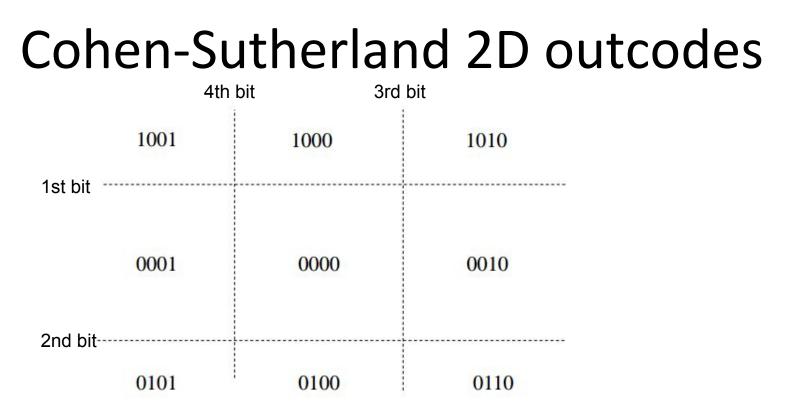




Cohen-Sutherland 2D outcodes



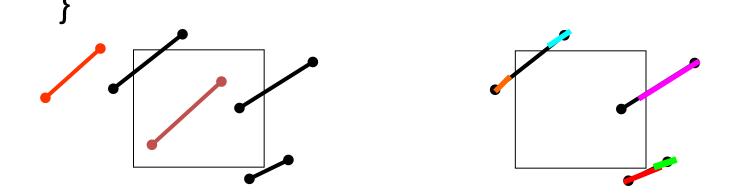
- The whole space is split into 9 regions
- Only the center region is visible
- Each region is encoded by four bits



- 4-bit code called: *Outcode*
- First bit : above top of window, y > ymax
- Second bit : below bottom, y < ymin</p>
- Third bit : to right of right edge, x > xmax
- Fourth bit : to left of left edge, x < xmin</p>

Cohen-Sutherland algorithm While (true) {

- Check if the line segment is trivial accept/reject
 - 2. Otherwise clip the edge and shorten



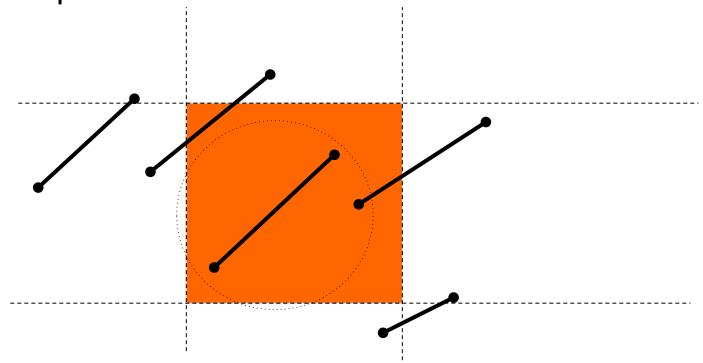
Recap of AND/OR operators

- 0 OR 0 = 0
- 0 OR 1 = 1 (if either is true, true)
- 1 OR 1 = 1

- 0 AND 0 = 01 AND 0 = 0 (if both are true
- 1 AND 0 = 0 (if both are true, true)
- 1 AND 1 = 1

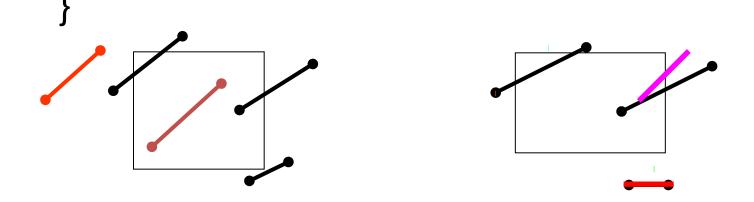
What is a trivial accept?

 All line vertices lie inside box → accept.
 Apply an 'OR' operation to the outcodes of two endpoints



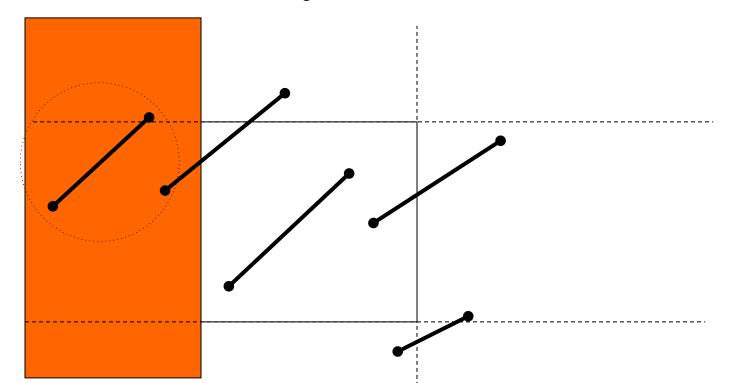
Cohen-Sutherland algorithm While (true) {

- Check if the line segment is trivial accept/reject
 - 2. Otherwise clip the edge and shorten

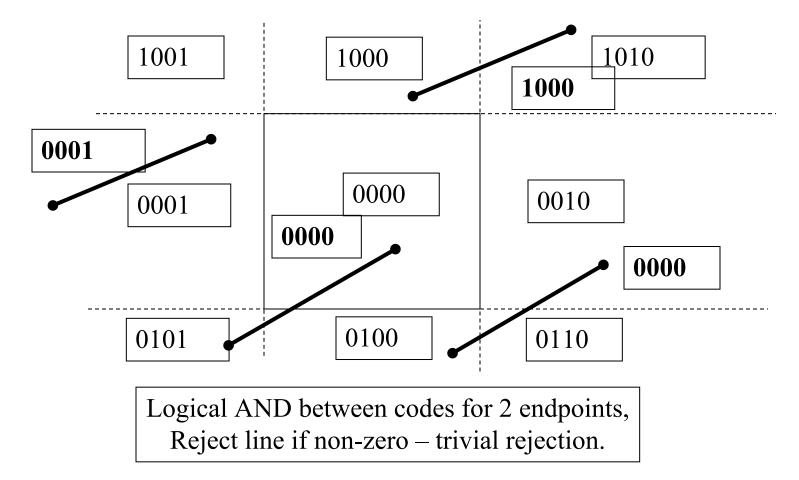


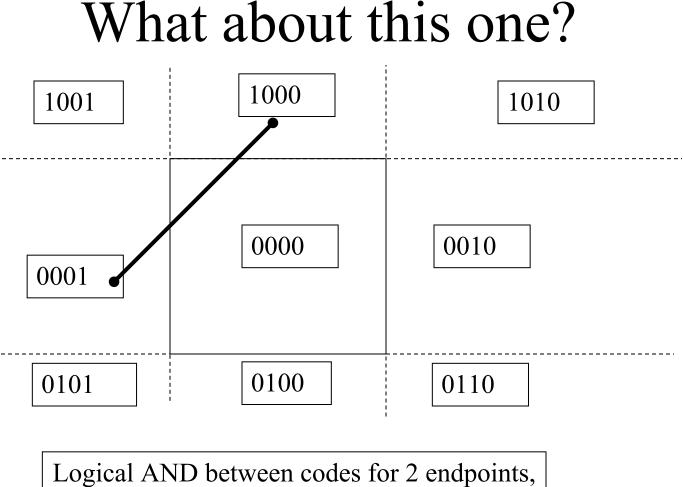
What is a trivial reject?

All line vertices lie outside and on same side \rightarrow reject. Apply an 'AND' operation to the two endpoints If not '0000', then reject



Cohen-Sutherland 2D outcodes

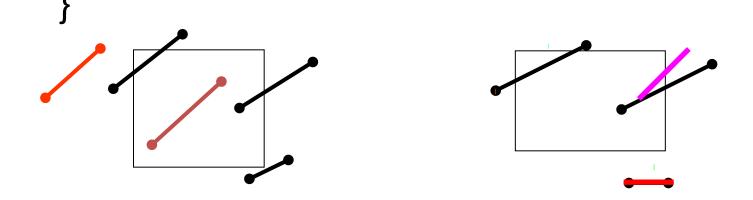




Reject line if non-zero – trivial rejection.

Cohen-Sutherland algorithm While (true) {

- Check if the line segment is trivial accept/reject
 - 2. Otherwise clip the edge and shorten



Line Intersection.

- Clip the line by edges of the rectangle
- Select a clip edge based on the outcode, split and feed the new segment on the side of the rectangle back into algorithm

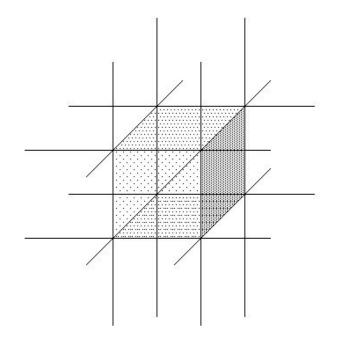


Cohen-Sutherland algorithm

How to extend to 3D?

Also clipping the lines using front / back planes

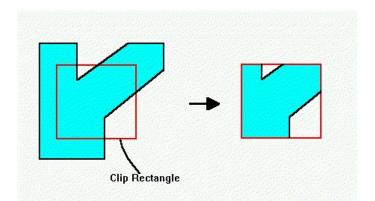
How many bits needed for the outcode?



Polygon Clipping: Sutherland-Hodgman's algorithm

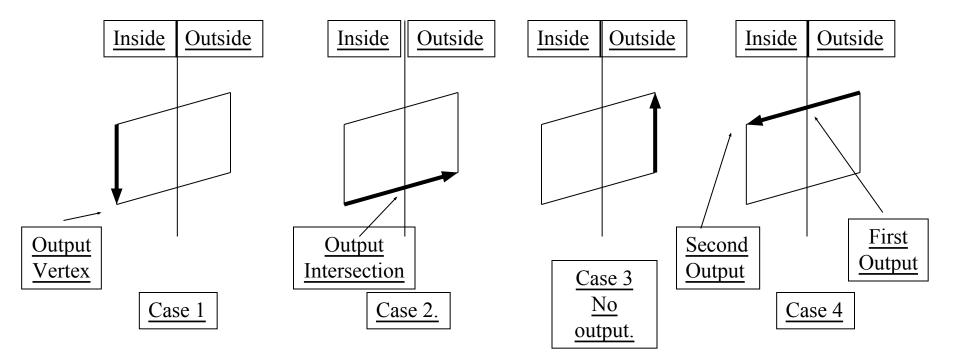
- A systematic approach to clip polygons
- Input : A 2D polygon
- Output : a list of vertices of the clipped polygon

Polygons are clipped at each edge of the window while traversing the polygon



Sutherland-Hodgman's algorithm

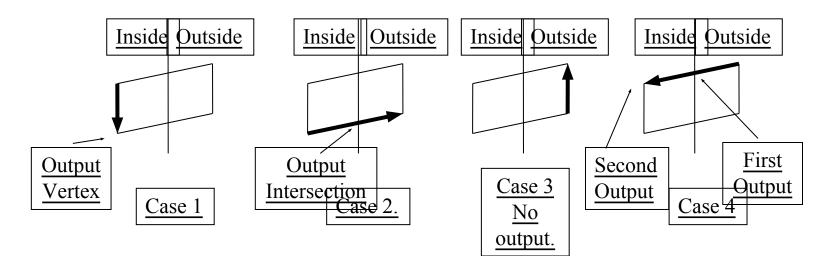
- The edges of the polygon are traversed
- The edges can be divided into four types



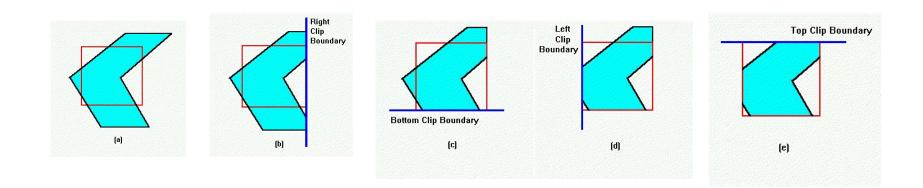
Sutherland-Hodgman's algorithm

For each edge of the clipping rectangle For each edge of the polygon (connecting pi, pi+1)

- If case 1 add p+1 to the output
- If case 2 add interaction to output
- If case 4 add intersection and p+1 to output



Example



Sutherland-Hodgman algorithm

• How to extend to 3D?

Summary

Projection

Perspective, parallel (orthographic) projection

Canonical view volume

Clipping

Cohen-Sutherland's algorithm

Sutherland-Hodgmans's algorithm

Readings

- Foley et al. Chapter 6 all of it,
 - Particularly section 6.5
- Introductory text, Chapter 6 all of it,
 - Particularly section 6.6
- Akenine-Moller, Real-time Rendering Chapter
 3.5
- Clipping lines, polygons
 - Foley et al. Chapter 3.12, 3.14
 - http://www.cc.gatech.edu/grads/h/Hao-wei.Hsieh /Haowei.Hsieh/mm.html