
Illumination and Shading

Computer Graphics – Lecture 5

Taku Komura

● Lighting
● How to compute the color of objects

according to the position of the light,
normal vector and camera position
● Phong illumination model

● Shading
● Different methods to compute the

color of the entire surface

What are Lighting and Shading?

The procedure of producing
images

1. For every vertex of the object, prepare its attributes
(normal vectors, colors, etc)

 -> vertex shader in GLSL
2. Project the vertices onto the screen
3. Interpolate the attributes to determine the color of the

pixel (rasterization)
 -> fragment shader in GLSL

Overview

● Lighting
○ Phong Illumination model

■ diffuse, specular and ambient lighting
● Shading

○ Flat shading
○ Gouraud shading
○ Phong shading

The eye works like a camera
Lots of photo sensors at the

back of the eye
Sensing the amount of light

coming from different
directions

Similar to CMOS and CCDs

Back ground of illumination

What Affects the Light that
Comes into the Eye

● position of the point
● position of the light
● color and intensity of the light
● camera vector
● normal vector of the surface at the vertex
● physical characteristics of the object (reflectance

model, color)

Phong Illumination Model
● Simple 3 parameter model

● The sum of 3 illumination terms:
● Diffuse : non-shiny illumination and shadows
● Specular : bright, shiny reflections
● Ambient : 'background' illumination

+ =

Diffuse
(directional)

Specular
(highlights)

Rc

+

Ambient
(color)

Diffuse Reflection
(Lambertian Reflection)

•When light hits an object
–If the object has a rough surface, it is
reflected to various directions

•Result: Light reflected to all directions

•The smaller the angle between the incident vector
and the normal vector is, the higher the chance that
the light is reflected back

•When the angle is larger, the reflection light gets
weaker because the chance the light is shadowed /
masked increases

Combining Diffuse and
Specular Reflections

Demo applets

● http://www.cs.auckland.ac.nz/~richard/research-
topics/PhongApplet/PhongDemoApplet.html

Color

● Finally color the pixel by the RGB color

Exercise 1

Attenuation

● Haven’t considered light attenuation – the light
gets weaker when the object is far away

● Use 1/(s+k) where s relates to eye-object
distance and k is some constant for scene.

Local Illumination Model
● Considers light sources and surface properties only.

● Not considering the light reflected back onto other surfaces
● Fast real-time interactive rendering.
● Cost increases with respect to the number of light

sources
● Most real-time graphics (games, virtual environments)

are based on local illumination models
● Implementation - OpenGL, Direct3D

What Cannot be Rendered by The
Emperical Reflectance Model

● Brushed Metal
● Marble surface

Overview

● Lighting
○ Phong Illumination model

■ diffuse, specular and ambient lighting
● Shading

○ Flat shading
○ Gouraud shading
○ Phong shading

How do we color the whole surface?

Shading Models

● Compute the color at the middle of the polygon
● All pixels in the same polygon are colored by the

same color
● Works well for objects really made of flat faces.

Flat Shading

● Suffers from Mach band effect
● Humans are very sensitive to the sudden change of

the brightness
● The artefact remains although the polygon number

is increased

Flat Shading

Mach Band (by Ernst Mach)
● An optical illusion

Gouraud Shading

Gouraud Shading (by Henri Gouraud)

●Computing the color per vertex by local illumination
model
●Then, interpolating the colors within the polygons

We can interpolate the color by barycentric
coordinates

Vertex Shader

Compute the color
per vertex

Fragment Shader

Interpolates the color
for every pixel

Gouraud Shading with GLSL

Passing the normals to the vertex shader

Gouraud Shaded Floor Phong Shaded Floor

Gouraud shading is not good when the polygon count is low

Phong Shading (by Bui Tuong Phong)

Phong Shading (by Bui Tuong Phong)

● Doing the lighting computation at every
pixel during rasterization

● Interpolating the normal vectors at the
vertices (again using barycentric
coordinates)

Phong Shading

● For specular
reflection, highlight
falls off with

● Can well produce a
highlight that occurs
in the middle of the
face.

Phong example

Vertex Shader (*.
vert)
Prepare the normal
vector per vertex

Fragment Shader
(*.frag)
Interpolates the normal
vector and do the lighting
computation for every pixel

Phong Shading with GLSL

Recommended Reading

● Foley et al. Chapter 16, sections 16.1.6 up
to and including section 16.3.4.

● Introductory text Chapter 14, sections
14.1.6 up to and including section 14.2.6.

● Fundamentals of Computer Graphics,
Shiley et al. Chapter 9

