lllumination and Shading

Computer Graphics — Lecture 5

Taku Komura

What are Lighting and Shading?

o Lighting
« How to compute the color of objects
according to the position of the light,
normal vector and camera position
« Phong illumination model
o Shading
 Different methods to compute the
color of the entire surface

The procedure of producing
1mages

For every vertex of the object, prepare its attributes
(normal vectors, colors, etc)

-> vertex shader in GLSL

Project the vertices onto the screen
Interpolate the attributes to determine the color of the
pixel (rasterization)

-> fragment shader in GLSL

Overview

e Lighting
o Phong lllumination model
m diffuse, specular and ambient lighting
e Shading
o Flat shading
o (Gouraud shading
o Phong shading

Back ground of illumination

arystaliine lens (min. refractive power approx. +20 D,
max, refractive power approx. +33 D)

The eye works like a camera

Lots of photo sensors at the
back of the eye

Sensing the amount of light
coming from different
directions

Similar to CMOS and CCDs

retina

fovea

\\

oplic nerve

. camera vector

What Affects the Light that
Comes into the Eye

. position of the point
. position of the light
. color and intensity of the light

. normal vector of the surface at the vertex -
. physical characteristics of the object (reflectance
model, color)

- L, ‘. N
|

\\

R (Reflection)
_\\%. 6

0

R X —»H

Phong lllumination Model

Simple 3 parameter model

The sum of 3 illumination terms:

. Diffuse : non-shiny illumination and shadows
. Specular : bright, shiny reflections

. Ambient : 'background' illumination

Diffuse Specular Ambient
(directional) (highlights) (color)

Diffuse Reflection
(Lambertian Reflection)

*\When light hits an object
—If the object has a rough surface, itis
reflected to various directions

*Result: Light reflected to all directions

*The smaller the angle between the incident vector
and the normal vector is, the higher the chance that ‘
the light is reflected back

\WWhen the angle is larger, the reflection light gets
weaker because the chance the light is shadowed /
masked increases

Diffuse Reflection

Infinite point Ln (llght) A
light source O - | i
N (normal) TN Sl
=1k, cosO \/ S

V (camera)
I, : Light Intensity

No dependence on

@ : the angle between the normal vector :
© camera angle!

direction towards the light

k, :diffuse reflectivity

Specular Reflection

*Direct reflections of light source
off shiny object

—The object has a very smooth
surface

—specular highlight on object

Specular Reflection

*Direct reflections of light source

off shiny object
—specular intensity » = shiny reflectance of
object
—Result: specular highlight on object
O Lll A N
Infinite point
light source R (Reflection)
0|06 5

I=1I,k/cos «a) v (camera)

No dependence on object color.

* Specular light with different n values n=d n=100

A

Combining Diffuse and
Specular Reflections

What is Missing?

Only the side that is lit by the light appears
brighter

The other side of the object appears very dark,
as if it is in the space

Multiple Light Sources

o[f there are multiple light sources, we need to do the
lighting computation for each light source and sum them

altogether
n O

lights

I,=1k,+» Ik, cos0+k cos" a]
p=1

Ambient Lighting

-Light from the environment

_Light reflected or scattered from other objects
~Coming uniformly from all directions and then
reflected equally to all directions

-A precise simulation of such effects requires a |ot
of computation

Ambient Lighting

Simple approximation to complex 'real-world’
process

Result: globally uniform color for object

= resulting intensity
. = light intensity Example: sphere
K, = reflectance O O
N/
] — ka]a

Combined Lighting Models

*Summing it altogether : Phong Illumination Model

[,=1k,+1 |k, cos0+k cos” o]

Ambient Diffuse Specular
(color) (directional) (highlights)

== =)

Using the Dot Products

Use dot product of the vectors instead of calculating

the angles g ¢

cos @ COS

lights L i . _l .
[, =1k, +> I[k,(NeL)+k (V eR)"]
p=1

a da

: Vector from the surface to the viewer
: Normal vector at the colored point
: Normalized reflection vector

- Normalized vector from the colored
point towards the light source

O

L

1\

2

N

0

0 |

<

Demo applets

. http://www.cs.auckland.ac.nz/~richard/research-
topics/PhongApplet/PhongDemoApplet.html

Color
lights . L
B =0k Y 1Nk (N eL)+k (7 «R)")
p=l
lights . . .
B 0=k + S IS (N e D) +kC (7 o R)")
p=1
lights . L
B - S PN e D)+ k2 (T o RY)
p=1

« Finally color the pixel by the RGB color

Exercise 1

What 1s t
What 1s t

Light positior
®
/ Light direction
0,142,1{2)
N(0,0,1)
Camera
P(0,0,0) (0,0,1)

Ip=1,kd=1,ks=1,n=2

he diffuse colour?
he specular colour?

What 1s t

(043

he specular colour if the camera position
/2,1/2) ?

Attenuation

Haven't considered light attenuation — the light
gets weaker when the object is far away

Use 1/(s+k) where s relates to eye-object
distance and k is some constant for scene.

Local Hlumination Model

. Considers light sources and surface properties only.
. Not considering the light reflected back onto other surfaces

. Fast real-time interactive rendering.

. Cost increases with respect to the number of light
sources

. Most real-time graphics (games, virtual environments)
are based on local illumination models

. Implementation - OpenGL, Direct3D

What Cannot be Rendered by The
Emperical Reflectance Model

. Brushed Metal
. Marble surface

Overview

e Lighting
o Phong lllumination model
m diffuse, specular and ambient lighting
e Shading
o Flat shading
o Gouraud shading
o Phong shading

How do we color the whole surface?

. The illumination model computes the color of sample points

« How do we color the entire object?

— This is done at the rasterization level

The procedure to color the entire surface is called shading

Shading Models

— Flat Shading (lighting computation is done once per polygon)
— less computation needed

— Gouraud shading (once per vertex)

— Phong Shading (once per pixel)

— heavy computation needed

Flat Shading

. Compute the color at the middle of the polygon
. All pixels in the same polygon are colored by the

same color
. Works well for objects really made of flat faces.

Flat Shading

. Suffers from Mach band effect

. Humans are very sensitive to the sudden change of
the brightness

. The artefact remains although the polygon number
IS iIncreased

Mach Band (by Ernst Mach)

_

. An optical illusion

Gouraud Shading

Gouraud Shading (by Henri Gouraud)

.Com{)uting the color per vertex by local 1llumination
model |
«Then, interpolating the colors within the polygons

cl o

acl+Bc2 +yc3

c3

We can interpolate the color by barycentric
coordinates

Gouraud Shading with GLSL

Vertex Shader Fragment Shader

Compute the color > Interpolates the color
per vertex for every pixel

Computing the Vertex Normals

AT . . <
N Find vertex normals by averaging face

normals —

__ I<i<n
N,

¥

1<i<n

Use vertex normals with desired shading model,
Interpolate vertex intensities along edges.

Interpolate edge values across a scanline.

vertex 1
veriex 2

veriex 3

triangle 1, triangle a
triangle 6, triangle
triangle 9, triangle 1

Passing the normals to the vertex shader

//Find the location for our vertex position variable

const char * attribute name = "in_position";

int positionLocation = gleetAttribLocation(shader.ID(), attribute name);

1t (positionLocation == -1} {
std: :cout << "Could not bind attribute " << attribute name << std::endl;
eturn;

//Tell OpenGL we will be using vertex position variable in the shader
glEnablevVertexAttribArray(positionLocation};
//Bind our vcrtcx position buffer
glBindBuffer(GL ARRAY BUFFER, wvbo);
//Define how to use our vertex buffer object. This applies to whatever VBO is currently bound to GL ARRAY BUFFER
glVertexAttribPointer(

positionLocation, // attribute (location of the in position variable in our shader program)

o £ number ol elemenls per verlex, here (x,y,£)
GL FLOAT, /f the type of each element

Gl _FAISF, /7 take our values as-is

a, // no extra data between each position

2] /f offset of first element

[

//Find the location for our vertex position variable

const char * attribute name2 = "in normal";
int normalVectors = glGetAttribLocation(shader.ID(), attribute name2);
17 (normalVectors == -1) {

std::cout =< "Could not bind attribute " =< attribute name2? =< std::endl;

return:
SLUr I

}
//Tell OpenGL we will be using normal vector variables in the shader
glEnableVertexAttribArray(normalvectors);
//Bind our normal vector buffer
glBindBuffer(GL ARRAY BUFFER, nbo);
//Define how to use our normal buffer object. This applies to whatever NBO is currently bound to GL_ARRAY BUFFER
glVertexAttribPointer(
normalVectors, // attribute (location of the in normal vector variable in our shader program)

3, [/ number of elements per vertex, here (x,y,z)
GL FLOAT, // the type of each element

GL_FALSLC, // take our values as-is

a, // no extra data between each position

2] [/ offset of first element

1

//Do the actual rendering of the primitives using all active attribute arrays
glhrawArrays (GL TRIANGLES,8,trig.VertexCount(});

//Disable usage of the array
glDisableVertexAttribArray(positionLocation);
glDisableVertexattribArray(normalVectors);

100 1 O

Problems with Gouraud Shading.

.For specular reflection, WAy
highlight falls off with cos” o y e
«Gouraud shading linear
InterpOIateS — makes hlgh“ght Direction of maximum
too big. highlight

«Gouraud shading may well
miss a highlight that occurs in
the middle of the face.

Gouraud Shaded Floor Phong Shaded Floor

Gouraud shading is not good when the polygon count is low

NV

Phong Shading (by Bui Tuong Phong)

Phong Shading (by Bui Tuong Phong)

e Doing the lighting computation at every
pixel during rasterization

e [nterpolating the normal vectors at the
vertices (again using barycentric
coordinates)

Phong Shading

¥
e For specular ah
reﬂeCtlon, hlghllght Direction of maximum
falls off with cos" a highlight ‘

e Can well produce a
highlight that occurs
in the middle of the
face.

Highlight on surface.

Phong example

Flat Gouraud Phong

Phong Shading with GLSL

Verrttex Shader (. Fragment Shader
\F/>e) th | ' frag)
JG PRSI OUANE > Interpolates the normal

vector per vertex vector and do the lighting

computation for every pixe

Problems with interpolation
shading.

.Problems with computing vertex normals.

Face surface normals and averaged vertex normals shown.

Unrepresentative so add small polygon strips along edges or
test angle and threshold to defeat averaging.

Problems with interpolation
shading.

.Problems with computing vertex normals.

A A,B are shared by all polygons, but C
1s not shared by the polygon on the
left.

‘C Shading information calculated to the
right of C will be different from that
to the lett.

@

B

Shading discontinuity.

Solution 1: subdivide into triangles that that share all the vertices
Solution 2 : introduce a ‘ghost’ vertex that shares C’s values

Recommended Reading

e Foley et al. Chapter 16, sections 16.1.6 up
to and including section 16.3.4.

e [ntroductory text Chapter 14, sections
14.1.6 up to and including section 14.2.6.

e Fundamentals of Computer Graphics,
Shiley et al. Chapter 9

