Computer Graphics

An Introduction

Taku Komura

What's this course all about?

We will cover...

Graphics programming and algorithms

Graphics data structures

Applied geometry, modelling and rendering

How to use OpenGL

Not covering : how to use software like Maya, 3D Studio Max, etc.

Other Important things

- You need to know about math
- We will use basic linear algebra
 - Dot product, cross product, matrix calculations
 - Basic calculus, solving linear systems

Please don't take the course if you don't like math

Outline for Today

- Classic streams of computer graphics
- Application areas of computer graphics
- About SIGGRAPH
- Overview of the course
 Topics in Graphics Pipeline, etc

Classic streams of computer graphics

- 2D/3D modeling (aircraft, car manufacturing)
- Interactive applications (computer games, design)
- Realistic rendering (Lots of work at University of Utah)
- Computer art (many people)

2D/3D Modeling

Designing curved surfaces was important for car and aircraft manufacturers in the old days •Such modeling requires a lot of mathematics •Lots of mathematicians join the graphics research community nowadays too

Interactive applications

- Sketchpad (1963, Ivan Sutherland)
 Head mount display (1968, Ivan Sutherland)
- •Tennis game (1958), Space war (1962)

Realistic Rendering (University of Utah)

- Gouraud shading (Gouraud, 1971)
- Phong shading (Phong, 1975)
- Phong illumination model (Phong 1973)

Realistic Rendering (University of Utah)

Bump mapping (1978)
Jim Blinn
Subdivision surface (Catmull, Clark 1978)

Computer Art (1960-)

Yoichiro Kawaguchi

Motivation : going to Mars

Outline for Today

- Classic streams of computer graphics
- Application areas of computer graphics
- About SIGGRAPH
- Overview of the course
 Topics in Graphics Pipeline, etc

The Application Areas of Computer Graphics

Computer Animation Computer Games Virtual Reality Scientific Visualization Human Computer Interactions

Computer Graphics is about animation (films)

What are the Challenges?

- Realistic Lighting and Reflections:
 - Need to make the lighting condition appear like real
 - Need to make objects reflect the light realistically
- Physical simulations:
 - Fluids (liquid, fire), rigid bodies
- Realistic movements of the faces, bodies, etc.
 - Need to make the imaginary characters appear as if they are really in the environment

Realistic Lighting and Reflections:

- Need to make the lighting condition appear like real
- Need to make objects reflect the light realistically (modeling the reflection model)

Physical Simulation

• Cloth

http://www.youtube.com/watch?v=NoazGEnzsRA

Physical Simulation

http://www.youtube.com/watch?v=feBfMf2J8uQ

Physical Simulation

- Rigid objects, destruction, explosions
- http://www.youtube.com/watch?

Computer Games

What are the Challenges?

- Everything altogether must run in real-time (30 frames per second)
 - Rendering (drawing the scene)
 - character control (player characters + non player characters)
 - Physical simulation (object collision, deformations)
 user input

Character Control

- Controlling the non-player character intelligently
- For player character, selecting an action based on the user input -> smooth transition

Virtual Reality, Medical Imaging is another driving force

Computer Aided Design, 3D modelling

3D modelling

Modelling a cup by Maya

http://vimeo.com/5423236

Scientific Visualisation

What are the challenges?

- Converting the numbers into something that is easy to understand
- Making use of human's visual perception

Volume rendering

Human Computer Interactions

- Sketch-based interfaces
- Story telling, puppetry
- puzzles

Teddy http://www.youtube. com/watch? v=e2H35SILmUA

Outline for Today

- Classic streams of computer graphics
- Application areas of computer graphics
- About SIGGRAPH
- Overview of the course
 Topics in Graphics Pipeline, etc

SIGGRAPH

(Special Interest Group on GRAPHics and Interactive Techniques)

- The biggest computer graphics conference in the world that started in 1974
- Now about 20,000 attendees every year
- Most important techniques have been presented at the SIGGRAPH Technical Paper programme
- Getting a paper into SIGGRAPH is very

important for CG researchers

http://www.youtube.com/watch? v=JAFhkdGtHck

Computer Animation Festival

Electronic Theater, Daytime Selects, and Production Sessions now online!

Conference 21–25 July 2013 Exhibition 23–25 July 2013 Anaheim Convention Center

Overview of the Course

• Graphics Pipeline (Today)

- 3D transformations
- (Local lighting effects) Illumination, lighting, shading, mirroring, shadowing
- Hidden surface removal
- Rasterization
- \circ Ray tracing
- Global illumination
- Modelling, Curves and Surfaces

Graphics Pipeline

- Graphics processes generally execute sequentially
- Pipelining the process means dividing it into stages
- Especially when rendering in real-time, different hardware resources are assigned for each stage

Graphics Pipeline

There are three stages Application Stage Geometry Stage Rasterization Stage

An example thro' the pipeline...

The scene we are trying to represent:

Application stage

- Entirely done in software by the CPU
- Read Data
 - \circ the world geometry database,
 - User's input by mice, trackballs, trackers, or sensing gloves
- In response to the user's input, the application stage change the view or scene

**************	3820355 2.446428 -0.064692 446428 -0.050004 446428 -0.050004 446428 -0.050004 446428 -0.050004 446428 -0.050004 446428 -0.050004 446428 -0.050004 446428 -0.050004 446428 -0.050000 446427 -0.050000 446427 -0.050000 4465000 -17500 0.0054000 -17500 4405000 -175271 1.0054000 -175271 1.00540000 -175271 1.00540000 -175271 1.00540000 -175271 1.00540000 -175271 1.00540000 -175271 1.00577926 0.00540000 411145170 -175271 0.0057926 41412475 -1775271 0.0000000 414144875 -1775271 0.0000000 414144875 -1775271 0.0000000 414144875 -1775271
والمراملة المراملة المرامل والمراملة	2009 2021 2039 2039 2021 2039 2024 20277 2021 2024 2027 2027 2027 2027 2027 2027 2027 2027

Preparing Shape Models (Lecture 2)

Designed by polygons, parametric curves/surfaces, implicit surfaces and etc.

Defined in its own coordinate system

Geometry Stage

- Applying transformations to the object vertices (scaling, rotating, translating)
- View transformation (viewing from the camera)
- Illumination and shading (for Gouraud shading)

Model Transformation (Lecture 3)

- Objects put into the scene by applying translation, scaling and rotation
- Linear transformation called homogeneous transformation is used
- The location of all the vertices are updated by this transformation

Perspective Projection (Lecture 4)

- We want to create a picture of the scene viewed from the camera
- We apply a perspective transformation to convert the 3D coordinates to 2D coordinates of the screen
- Objects far away appear smaller, closer objects appear bigger

Hidden Surface Removal (Lecture 7)

• Objects occluded by other objects must not be drawn

Shading and Lighting (Lecture 6)

 We need to decide the colour of each pixels taking into account the object's colour, lighting condition and the camera position

Shading : Constant Shading -Ambient

• Objects colours by its own colour

Shading – Flat Shading

- Objects coloured based on its own colour and the lighting condition
- One colour for one face

Gouraud shading, no specular highlights

• Lighting calculation per vertex

Specular high lights added

Rasterization (Lecture 5)

- Converts the vertex information output by the geometry pipeline into pixel information needed by the video display
- Aliasing: distortion artifacts produced when representing a high-resolution signal at a lower resolution.
- Anti-aliasing : technique to remove aliasing
- Illumination and shading

(for Phong shading)

Anti-aliasing

Aliased polygons (jagged

Anti-aliased polygons

Lecture 1

 How is anti-aliasing done? Each pixel is subdivided

(sub-sampled) in n regions, and each sub-pixel has a color;

• Compute the average color value

Texture mapping (Lecture 8)

Other effects: Bump mapping (Lecture 9) Reflections (Lecture 10), shadows (Lecture 11)

Lecture 1

Other covered topics: Ray Tracing (Lecture 12) Global Illumination (Lecture 13)

Polynomial Curves, Surfaces (Lecture 14,15)

OpenGL (Lecture 4 / Lab session)

 OpenGL is a standard computer graphics library for interactive computer graphics
 A TA will give an introductory session for OpenGL

Lecture 1

Course support resources

- Graphics course website
- http://www.inf.ed.ac.
 - uk/teaching/courses/cg
 - o lecture material,
 - \circ recommended reading,
 - Links to support material for lectures and projects,
 - Practical description and resources

Summary

- The course is about algorithms, not applications
 - Lots of mathematics
- Graphics execution is a pipelined approach
- Basic definitions presented
- Some support resources indicated