## **Computer Graphics**

Review Taku Komura

#### **Overview**

- Review
- Some additional things

#### Review

- Graphics pipeline
- Modeling, object representations
  Procedural modeling, L-System
- Projection and Rasterization
- Illumination
- Hidden surface removal
- •Texture mapping, bump mapping, environment mapping
- Anti-alising
- Shadows
- Global Illumination
- Curves and surfaces

## **Graphics Pipeline**

#### Three stages

- Application stage
  - Entirely done in the CPU
  - Loading data, getting user input
- Geometric stage
  - Applying transformation to vertices
  - Computing the attributes for the vertices
- Rasterization stage
  - Per pixel computation
  - Converting the continuous representation to the discrete representations

# In which stage the following events happen?

- Illumination in Phong shading
- Illumination in Gouraud shading
- Bump mapping
- Antialiasing
- Computing the pose of a robot character
- Hidden surface removal



### **Modeling objects**

- Triangle Strips
- Metaballs
- Procedural methods
- Parametric surfaces (NURBS etc)
- Subdivision surfaces
- 3D scanning
- Procedural methods







## What are the good ways to model the following objects?



#### **Procedural Modeling**

- Modeling objects by rules
  - Modeling cities and trees
  - Example: L-system (trees, flowers)





#### What is an L-System ?

- Lindenmayer system, or L-System, was introduced in 1968 by the biologist Aristid Lindenmayer
- A mathematical theory on plant development.



The development of an organism... may be considered as the execution of a 'developmental program' present in the fertilized egg.... A central task of developmental biology is to discover the underlying algorithm from the course of development.

— Aristid Lindenmayer —

AZQUOTES

## L-Systems

Representing plants by strings

F=C0FF-[C1-F+F+F]+[C2+F-F-F] \_\_\_\_\_



- Starting from an *axiom*
- Expand based on deterministic rules

## Example

- Variables a, b
- Axiom : a
- RULES: a->aba, b->bbb
- How does it go on then?
  - Step #0 : a (axiom)
  - Step #1 : aba
  - Step #2 : aba bbb aba
  - Step #3 : aba bbb aba bbb bbb bbb aba bbb aba
  - □ Step #4 : ...

## **Turtle interpretation of L-strings**

- F Move forward a step of length d and connect the new position with the last position by a line segment.
- + Turn left by angle (counter clockwise)

 $\delta$ 

Turn right by angle (clockwise).



## **Bracketed L-systems**

- In order to specify the data structure for presenting axial trees, the concept of ``strings with brackets" was introduced
- The L-system's alphabet is extended by two new commands
  - Push the current state of the turtle onto a stack.
  - Pop a state from the stack and make it the current state of the turtle.

Bracketed L-string,  $\delta = 90$  degrees, F[+F]F[-F]

http://www.kevs3d.co.uk/dev/lsystems/#

#### Projection





## Clipping





#### Illumination and Shading





Flat shading, Gouraud shading, Phong shading



#### **Illumination and Shading**



#### **Texture Mapping**







#### **Texture Mapping**



#### What is the mapping function?

### **Environment Mapping**









#### Mirrored world







#### **Shadows**



![](_page_21_Picture_2.jpeg)

![](_page_21_Picture_3.jpeg)

![](_page_21_Picture_4.jpeg)

![](_page_21_Picture_5.jpeg)

![](_page_21_Picture_6.jpeg)

#### Anti-aliasing

![](_page_22_Picture_1.jpeg)

![](_page_22_Picture_2.jpeg)

![](_page_22_Picture_3.jpeg)

![](_page_23_Figure_0.jpeg)

![](_page_23_Picture_1.jpeg)

![](_page_24_Picture_0.jpeg)

![](_page_24_Picture_2.jpeg)

#### **Bump mapping**

![](_page_25_Figure_1.jpeg)

![](_page_26_Picture_0.jpeg)

### Hidden Surface Removal

#### Z-buffer, BSP trees, Portal culling

![](_page_27_Figure_2.jpeg)

![](_page_28_Picture_0.jpeg)

![](_page_28_Picture_1.jpeg)

#### Transparency

alpha = 0.5

![](_page_29_Picture_2.jpeg)

![](_page_29_Picture_3.jpeg)

![](_page_29_Picture_4.jpeg)

![](_page_29_Picture_5.jpeg)

![](_page_29_Figure_6.jpeg)

## **Ray Tracing**

![](_page_30_Picture_1.jpeg)

![](_page_30_Figure_2.jpeg)

![](_page_30_Figure_3.jpeg)

 How to make a bounding sphere hierarchy?

![](_page_31_Picture_0.jpeg)

![](_page_31_Figure_1.jpeg)

## **Light Transport Notations**

L a light source

E the eye

- S a specular reflection
- D a diffuse reflection

![](_page_32_Picture_5.jpeg)

![](_page_32_Picture_6.jpeg)

![](_page_32_Picture_7.jpeg)

LSDE

## Radiosity

![](_page_33_Picture_1.jpeg)

 $B_j = E_j + \rho_j \sum_{i=1}^N B_i F_{i,j}$ 

![](_page_33_Picture_3.jpeg)

 $\begin{pmatrix} 1 - \rho_1 F_{11} & -\rho_1 F_{12} & \dots & -\rho_1 F_{1N} \\ -\rho_2 F_{21} & 1 - \rho_2 F_{22} & \dots & -\rho_2 F_{2N} \\ \vdots & \vdots & \dots & \vdots \\ -\rho_N F_{N1} & -\rho_N F_{N2} & \dots & 1 - \rho_N F_{NN} \end{pmatrix} \begin{pmatrix} B_1 \\ B_2 \\ \vdots \\ B_N \end{pmatrix} = \begin{pmatrix} E_1 \\ E_2 \\ \vdots \\ B_N \end{pmatrix}$ 

![](_page_33_Picture_5.jpeg)

![](_page_33_Picture_6.jpeg)

## For computing the radiosity, you use an iterative approach

![](_page_34_Figure_1.jpeg)

![](_page_34_Picture_2.jpeg)

## Path Tracing

![](_page_35_Picture_1.jpeg)

Diffuse surface

![](_page_35_Picture_3.jpeg)

![](_page_35_Picture_4.jpeg)

#### **Photon Mapping**

![](_page_36_Figure_1.jpeg)

![](_page_36_Figure_2.jpeg)

![](_page_36_Figure_3.jpeg)

$$L_r(x,\vec{\omega}) = \sum_{p=1}^N f_r(x,\vec{\omega_p},\vec{\omega}) \frac{\Delta \Phi_p(x,\vec{\omega_p})}{\Delta A}$$

![](_page_37_Picture_0.jpeg)

![](_page_37_Picture_1.jpeg)

Figure 20: Global photon map radiance estimates visualized directly using 100 photons (left) and 500 photons (right) in the radiance estimate.

#### Parametric Curves and Surfaces

![](_page_38_Figure_1.jpeg)

![](_page_38_Figure_2.jpeg)

![](_page_38_Figure_3.jpeg)

http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/surface/be zier-de-casteljau.html

#### Adaptive Tesselation, On-the-fly Tesselation

![](_page_39_Picture_1.jpeg)

![](_page_39_Picture_2.jpeg)

![](_page_39_Picture_3.jpeg)

![](_page_39_Picture_4.jpeg)

![](_page_39_Picture_5.jpeg)

#### NURBS, Subdivision Surface

![](_page_40_Picture_1.jpeg)

![](_page_40_Picture_2.jpeg)

![](_page_40_Picture_3.jpeg)

![](_page_40_Picture_4.jpeg)

![](_page_40_Picture_5.jpeg)

![](_page_41_Picture_0.jpeg)

#### Good Luck!!

![](_page_41_Picture_2.jpeg)

![](_page_41_Picture_3.jpeg)

![](_page_41_Picture_4.jpeg)

![](_page_41_Picture_5.jpeg)

![](_page_41_Picture_6.jpeg)

![](_page_41_Picture_7.jpeg)

![](_page_41_Picture_8.jpeg)

![](_page_41_Picture_9.jpeg)

![](_page_41_Picture_10.jpeg)

![](_page_41_Picture_11.jpeg)

![](_page_41_Picture_12.jpeg)