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Today 
– More about Bezier and Bsplines

■ de Casteljau’s algorithm
■ BSpline : General form
■ de Boor’s algorithm
■ Knot insertion 

– NURBS 
– Subdivision Surface



de Casteljau’s Algorithm

• A method to evaluate (sample points in) or draw 
the Bezier curve 

• The Bezier curve of any degree can be handled
• A precise way to evaluate the curves 



de Casteljau’s Algorithm

•  

http://www.inf.ed.ac.uk/teaching/courses/cg/d3/Casteljau.html



Why does this result in the 
polynomial?



Why do we need this?
• The explicit representation (monomial form) that I 

presented last week can result in some instability
• Say the control points are randomly changed for 

0.001.
• The curve computed by the de Casteljau’s algorithm 

stays almost the same. 
• The curve by the polynomial basis form can deviate 

from the original curve if the degree is high



Connecting many Bezier Patches in 
the polynomial form

• The same story applies to surfaces 
• The degree of surface can easily go high, as 

they are the multiplication of two curves
• Bicubic → 6 
• The error of 16
control points will
be accumulated
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*

A Bspline is a parametric curve composed of a linear combination 
of basis B-splines Bi,n

Pi (i=0,…,m)  the control points

Knots:                                    -  subdivide the domain of the 
B-spline curve into a set of knot spans [ti, ti+1) 

The B-splines can be defined by

B-Spline : A General Form

 



Bspline Basis 



Bspline Basis (2)
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Producing Curves by B-Splines

• The basis functions are multiplied to the control 
points and to define arbitrary curves
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Knots
• The knots produce a vector that defines the 

domain of the curve
• The knots must be in the increasing order 
• But not necessarily uniform 
• If uniformly sampled and the degree is 3                                    

uniform cubic bspline

0     1      2       3       4       5       6      7       8       9      10     11     12      13     

knots



Knots

Here is an example of non-uniform knots

http://www.inf.ed.ac.uk/teaching/courses/cg/d3/nonbspline.html



Some Terms 
• Order k:  the number of control points that affect the sampled 

value 
• Degree k-1 (the basis functions are polynomials of degree k-1)
• Control points Pi (i=0,…,m)
• Knots : tj, (j=0,…, n)
• An important rule :   n – m = k 
• The domain of function  tk-1 ≦ t ≦tm+1  

– Below, k = 4, m = 9,    domain, t3 ≦ t ≦t10  
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Clamped Bsplines

• The first and last knot values are repeated with 
multiplicity equal to the order (= degree + 1) 

• The end points pass the control point
• For cubic Bsplines, the multiplicity of the first / 

last knots must be 4 (repeated four times) 



Controlling the shape of B-splines

• Moving the control points is the most obvious 
way to control B-spline curves

• Changing the position of control point Pi only 
affects the local region 

http://www.ibiblio.org/e-notes/Splines/basis.html
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De Boor’s Algorithm

•  



Example
• Assume we have a cubic B-spline whose knot 

vector is {0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1}
• Let’s compute a point at t = 0.4
• Then,  t4 < t < t5,  and the control points that 

affect the final position are P4, P3, P2, P1
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Example
• Assume we have a cubic B-spline whose knot 
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What if you want to edit some 
details? 

• You might want to add some high resolution details 
at a particular area while keeping the rest the same 



Knot insertion 
• We can do this by knot Insertion

– increase the resolution for some area
• New knots and control points can be added 

without changing the shape of the curve
• Both the knots and control points are going to 

increase 



Knot insertion 
• For a curve of degree f, we remove f-1 points and 

add f points 
• i.e., for a cubic B-spline, remove 2 points and add 

3 points



Knot insertion 
• If the new knot t is inserted into the span [tj, tj+1), 
the new control points can be computed by

where Qi is the new control point and ai is computed by 

The polyline Pj-k+1, Pj-k+2, ..., Pj-1, Pj is replaced with       
Pj-k+1, Qj-k+2, ..., Qj-1, Qj ,Pj. 

 



Example 

• A Bspline curve of 
degree 3 (k=4) having 
the following knots 

• t=0.5 inserted

t0 to t3 t4 t5 t6 t7 t8 to t11 

0 0.2 0.4 0.6 0.8 1 

t0 to t3 t4 t5 t6 t7 t8 t9 to t12 

0 0.2 0.4 0.5 0.6 0.8 1 

http://i33www.ira.uka.de/applets/mocca/html/no
plugin/curves.html
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http://geom.ibds.kit.edu/applets/mocca/html/noplugin/IntBSpline/AppInsertion/ind
ex.html

http://geom.ibds.kit.edu/applets/mocca/html/noplugin/IntBSpline/AppInsertion/index.html
http://geom.ibds.kit.edu/applets/mocca/html/noplugin/IntBSpline/AppInsertion/index.html
http://geom.ibds.kit.edu/applets/mocca/html/noplugin/IntBSpline/AppInsertion/index.html


Summary of B-splines 
• Knot vector defines the domain 
• Evaluation by de Boor’s algorithm
• Controlling the shape by the control points
• Clamping the points by increasing the multiplicity of 

the knots at the end points
• Increase the resolution by knot insertion 
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NURBS (Non-uniform rational B-spline) 
• Standard curves/surface representation in computer 

aided design 

Pi : control points
Bi,k:  Bspline basis of order k
wi  :  weights



Benefits of using NURBS

• More degrees of freedom to control the curve 
(can control the weights)

• Invariant under perspective transformation 
– Can project the control points onto the screen and 

draw the NURBS on the screen
■ Don’t need to apply the perspective 

transformation to all the sample-points on the 
curve

• Can model conic sections such as circles, 
ellipses and hyperbolas 



Example of changing weights

• Increasing the weight will bring the curve closer 
to the corresponding control point 



Bspline Surfaces 
• Given the following information: 
• a set of m+1 rows and n+1 control points pi,j, where 0 <= i <= m 

and 0 <= j <= n; 
• Corresponding knot vectors in the u and v direction, 



Clamping, Closing B-spline Surfaces 
• The B-spline surfaces can be clamped by repeating the same knot 

values in one direction of the parameters (u or v)
• We can also close the curve / surface by recycling the control 

points



Closed B-spline Surfaces 
• If a B-spline surface is closed in one direction, then the surface 

becomes a tube. 
• Closed in two direction :  torus 

– Problems handling objects of arbitrary topology, such as a ball, double torus
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Subdivision Surface 

• A method to model smooth surfaces 



3D subdivision surface

• Giving a rough shape first and subdivide it 
recursively  

• Stop when the shape is smooth enough 
• Used for modeling smooth surfaces 



Motivation

• Shape modelling 
– Topological restrictions of NURBS surfaces

• Plane, Cylinder, and Torus
• It is difficult to maintain smoothness at seams of 

patchwork.
– Example:  hiding seams in Woody (Toy Story) [DeRose98]

– NURBS also require the control nets consist of a 
regular rectangular grid of control points

• LOD in a scene
– A coarse shape when far away, a smooth dense 

surface when closer to the camera



Subdivision surface

• Can handle arbitrary topology 

Different Schemes 
• Doo-Sabin ‘78
• Catmull-Clark  ‘78
• Etc (Loop, Butterfly, and many others)



A Primer: Chaiken’s Algorithm

Apply Iterated 
Function 
System

Limit Curve Surface
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Q5

http://www.multires.caltech.edu/teaching/demos
/java/chaikin.htm

http://www.multires.caltech.edu/teaching/demos
/java/chaikin.htm



Doo-Sabin Subdivision
• Proposed by Doo and Sabin in 1978
• An extension of Chaiken’s algorithm to 3D mesh surfaces



Doo-Sabin Subdivision (2)
• An edge point is formed from the midpoint of each edge 
• A face point is formed as the centroid of each polygon of 

the mesh. 



Doo-Sabin Subdivision (2)
• An edge point is formed from the midpoint of each edge 
• A face point is formed as the centroid of each polygon 

of the mesh. 



Doo-Sabin Subdivision (2)
• Finally, each vertex in new mesh is formed as average of 

– a vertex in the old mesh, 
– a face point for a polygon that touches that old vertex, and 
– the edge points for the two edges that belong to that polygon and 

touch that old vertex. 
•



Doo-Sabin Subdivision (3)

The new mesh will be composed of  
– quadrilaterals for each edge in the old mesh, 
– a smaller n-sided polygon for each n-sided polygon in the 

old mesh, and 
– an n-sided polygon for each n-valence vertex (Valence 

being the number of edges that touch the vertex). 
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The new mesh will be composed of  
– quadrilaterals for each edge in the old mesh, 
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Doo-Sabin Subdivision
• Proposed by Doo and Sabin in 1978
• An extension of Chaiken’s algorithm to 3D mesh surfaces

http://www.rose-hulman.edu/~finn/CCLI/Applets/DooSabinApplet.html



Catmull-Clark Subdivision

• A face with n edges are subdivided into n 
quadrilaterals

• Quads are better than triangles at capturing the 
symmetries of natural and man-made objects.  



Catmull-Clark Subdivision
FACE

EDGE

VERTEX

http://www.rose-hulman.edu/~finn/CCLI/Applets
/CatmullClarkApplet.html



Modeling with Catmull-Clark

• Subdivision produces smooth continuous surfaces.  
• How can “sharpness” and creases be controlled in a 

modeling environment? 
ANSWER: Define new subdivision rules for “creased” 

edges and vertices.

• Tag Edges sharp edges.

• If an edge is sharp, apply new 
sharp subdivision rules.

• Otherwise subdivide with 
normal rules.



Sharp Edges…
• Tag Edges as “sharp” or “not-sharp”

• n = 0 – “not sharp”
• n > 0 – sharp

During Subdivision, 

• if an edge is “sharp”, use sharp 
subdivision rules.  Newly created edges, 
are assigned a sharpness of n-1.

• If an edge is “not-sharp”, use normal 
smooth subdivision rules.

IDEA: Edges with a sharpness of “n” do 
not get subdivided smoothly for “n” 

iterations of the algorithm.

●In the picture on the right, the control 
mesh is a unit cube 

●Different sharpness applied



Sharp Rules
FACE (unchanged)

EDGE

VERTEX

crease

corner >2

2

# adj. Sharp edges



Another example of creases 



Subdivision Surfaces in character 
animation [DeRose98]

• Used for first time in 
Geri’s game to 
overcome topological 
restriction of NURBS

• Modeled Geri’s head, 
hands, jacket, pants, 
shirt, tie, and shoes



Geri’s Game

• Academy Award winning movie by Pixar
– Made by subdivision surface  

[http://www.youtube.com/watch?v=1m7dcbIKvlw]

Demo of Catmull-Clark subdivision surface 
• http://www.youtube.com/watch?v=lU8f0hnorU8&feature=related



Adaptive Subdivision
• Not all regions of a model 

need to be subdivided.
• Idea:  Use some criteria and 

adaptively subdivide mesh 
where needed.
– Curvature
– Screen size ( make triangles 

< size of pixel )
– View dependence 

• Distance from viewer
• Silhouettes
• In view frustum

– Careful! Must ensure that 
“cracks” aren’t made

crack

subdivide

View-dependent refinement of progressive meshes 
Hugues Hoppe.
(SIGGRAPH ’97)



Subdivision Surface Summary 

• Advantages
– Simple method for describing complex surfaces 
– Relatively easy to implement 
– Arbitrary topology 
– Local support 
– Guaranteed continuity 
– Multi-resolution 

• Difficulties
– Intuitive specification  
– Parameterization 
– Intersections 



• Edwin Catmull
Utah –  NYIT – Lucas Films – Pixar - 
present: President of Disney Animation 

Studios and Pixar Animation Studios

• Jim Clark 
Utah – UCSC - Stanford – Silicon Graphics -  

Netscape - …

He also co-produced the movie The Cove. 

http://en.wikipedia.org/wiki/The_Cove_(film)


Readings
• Shirley - 15.6.3, 15.6.4
• Akenine-Möller - 13.5.4 (Catmull-Clark subdivision)
• A very good website for parametric curves / surfaces 

http://www.cs.mtu.edu/~shene/COURSES/cs3621/
• DeRose, Tony, Michael Kass, and Tien Truong.  Subdivision Surfaces in 

Character Animation.  SIGGRAPH 98.
• Clark, E., and J. Clark.  Recursively generated B-spline surfaces on arbitrary 

topological meshes.  Computer Aided Geometric Design, Vol. 10, No. 6, 
1978.

• Doo, D. and M. Sabin.  Behavior of Recursive Division Surfaces Near 
Extraordinary Points.  Computer-Aided Design.  Vol. 10, No. 6, 1978.


