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Today

— More about Bezier and Bsplines
m de Casteljau’s algorithm
m BSpline : General form
m de Boor’s algorithm
m Knot insertion

— NURBS
— Subdivision Surface



de Casteljau’'s Algorithm

* A method to evaluate (sample points in) or draw
the Bezier curve

* The Bezier curve of any degree can be handled
* A precise way to evaluate the curves




de Casteljau’'s Algorithm

* Giventhe control points P, ..., P, and the
parametervalue 0 <t <1,

* Repeat the following procedure
—-SetP". ()= —-t) P (&) +tPT ()
- PO (t) = P;
— Then, P™ (t) Is the point with parameter value t on
the Bezier curve

http://www.inf.ed.ac.uk/teaching/courses/cg/d3/Casteljau.html



Why does this result in the
polynomial?

Let's think of a quadratic case that there are
three points Po, P1, P-.

P*.(t)=(1—1t) Py +tP,

P' (t)=(1—1t) P, +tP,

P @=L —0P, +tP=,

By inserting the first two equations into the
third one, we obtain

P2, (t) = (1 —1t)*Py+ 2t(1 = t)P, + t*P,

Doing this for 4 control points will give the
cubic formula | presented last week




Why do we need this?

* The explicit representation (monomial form) that |
presented last week can result in some instabillity

» Say the control points are randomly changed for
0.001.

* The curve computed by the de Casteljau’s algorithm
stays almost the same.

* The curve by the polynomial basis form can deviate
from the original curve if the degree is high



Connecting many Bezier Patches in
the polynomial form

* The same story applies to surfaces

* The degree of surface can easily go high, as
they are the multiplication of two curves

* Bicubic — 6

* The error of 16
control points will
be accumulated
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B-Spline : A General Form

A Bspline 1s a parametric curve composed of a linear combination
of basis B-splines Bix

m

p(1) = ZPfBz:k (7)

Knots: 7, <7, <...<7, - subdivide the domain of the

1T

B-spline curve into a set of knot spans [ti, ti+1)

Pi (i=0,...,m) the control points

The B-splines can be defined by
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Producing Curves by B-Splines

» The basis functions are multiplied to the control
points and to define arbitrary curves




Knots

* The knots produce a vector that defines the
domain of the curve

* The knots must be in the increasing order
» But not necessarily uniform

* If uniformly sampled and the degree is 3
_ . uniform cubic bspline

o 1 2 3 4 5 6 7 8 9 10} 11 12 13




Knots

Here is an example of non-uniform knots

N

http://www.inf.ed.ac.uk/teaching/courses/cg/d3/nonbspline.html



Some Terms

Order k: the number of control points that affect the sampled
value

Degree k-1 (the basis functions are polynomials of degree k-1)
Control points Pi (i=0,...,m)

Knots : ¢, (j=0,..., n)

An importantrule: n—-m=Kk

The domain of function tk-1 = t =tm+1

—Below, k=4, m=9, domain, 3=t =t

3 m+1

le= |




Clamped Bsplines

* The first and last knot values are repeated with
multiplicity equal to the order (= degree + 1)

* The end points pass the control point

* For cubic Bsplines, the multiplicity of the first /
last knots must be 4 (repeated four times)




Controlling the shape of B-splines

* Moving the control points is the most obvious
way to control B-spline curves

» Changing the position of control point PJj only
affects the local region

http://www.ibiblio.org/e-notes/Splines/basis.html
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De Boor's Algorithm

» A B-spline version of the de Casteljau’s algc
* A precise method to evaluate the curve

» Starting from the control points P, ..., B, anc

parameter value t, recursively solve the
following problem

P =(1-a )P '+a P’




Example

 Assume we have a cubic B-spline whose knot
vectoris {0, 0, 0, 0, 0.25, 0.5, 0.75, 1,1, 1, 1}

» Let's compute a pointatt=0.4

* Then, t4 <t <ts5 and the control points that
affect the final position are P4, P3, P2, P1




Example
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Example

= — — — t5:0_5
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Example
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What if you want to edit some
details?

* You might want to add some high resolution detalils
at a particular area while keeping the rest the same



Knot insertion

* We can do this by knot Insertion

— increase the resolution for some area
* New knots and control points can be added
without changing the shape of the curve

* Both the knots and control points are going to
Increase




Knot insertion

* For a curve of degree f, we remove f-1 points and
add f points

* |.e., for a cubic B-spline, remove 2 points and add
3 points




Knot insertion

 If the new knot t 1s imnserted into the span /4, t+1),
the new control points can be computed by

Q =(1-a)P_,+aP,
where Qi 1s the new control point and a:i 1s computed by
A ¢

a, = for j-k+2<i<j
Lk — 1

1

The polyline Pj-i+1, Pj-k+2, ..., Pj-1, Pj 1s replaced with
P/{-Z{_jn Q;-k—i_za = Q]'_ln Q} :P]

£ t ti+k-1

:= : 4

ail 1-a1



Example

* A Bspline curve of
degree 3 (k=4) having
the following knots

 t=0.5 1nserted

t0 to t3

http://i33www.ira.uka.de/applets/mocca/html/no

plugin/curves.html




Example

* A bspline curve of
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Example
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http://geom.ibds.kit.edu/applets/mocca/html/noplugin/IntBSpline/AppInsertion/index.html
http://geom.ibds.kit.edu/applets/mocca/html/noplugin/IntBSpline/AppInsertion/index.html
http://geom.ibds.kit.edu/applets/mocca/html/noplugin/IntBSpline/AppInsertion/index.html

Summary of B-splines

* Knot vector defines the domain

* Evaluation by de Boor’s algorithm

* Controlling the shape by the control points

* Clamping the points by increasing the multiplicity of
the knots at the end points

* Increase the resolution by knot insertion
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NURBS (Non-uniform rational B-spline)

 Standard curves/surface representation in computer

aided design )

> B, (WP,
ClH=-

Z B, (Ow,
i=0

Pi1 : control points
Bik: Bspline basis of order k
wi : weights



Benefits of using NURBS

* More degrees of freedom to control the curve
(can control the weights)

* Invariant under perspective transformation

— Can project the control points onto the screen and
draw the NURBS on the screen

m Don't need to apply the perspective
transformation to all the sample-points on the
curve

 Can model conic sections such as circles,
ellipses and hyperbolas



Example of changing weights

* Increasing the weight will bring the curve closer
to the corresponding control point




Bspline Surfaces

* Given the following information:
« asetof m+1 rows and n+1 control points pi,j, where 0 <= i <= m
and 0 <=j <= n;

* Corresponding knot vectors 1n the u and v direction,

p(u,v) = Z Z B, ,(u)B, ,(v)P, ; :non—rational B-spline

i=0 j=0

ZZHU B, ,(u)B, ,(v)P, ,

plu,v)="1= :NURBS

ZZHU Fp(f.*)B V)

i=0 j=0




Clamping, Closing B-spline Surfaces

« The B-spline surfaces can be clamped by repeating the same knot
values in one direction of the parameters (u or v)

« We ct:an also close the curve / surface by recycling the control
points




Closed B-spline Surfaces

 If a B-spline surface is closed in one direction, then the surface
becomes a tube.

* Closed in two direction : torus
— Problems handling objects of arbitrary topology, such as a ball, double torus
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Subdivision Surface

A method to model smooth surfaces



3D subdivision surface

 Giving a rough shape first and subdivide it
recursively

» Stop when the shape is smooth enough
» Used for modeling smooth surfaces




Motivation

* Shape modelling

— Topological restrictions of NURBS surfaces
 Plane, Cylinder, and Torus

* It is difficult to maintain smoothness at seams of
patchwork.
— Example: hiding seams in Woody (Toy Story) [DeRose98]
— NURBS also require the control nets consist of a
regular rectangular grid of control points

« LOD in a scene

— A coarse shape when far away, a smooth dense
surface when closer to the camera



Subdivision surface

» Can handle arbitrary topology

Different Schemes
* Doo-Sabin 78

« Catmull-Clark ‘78

» Etc (Loop, Butterfly, and many others)




A Prlmer Chalken S Algorlthm
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http://www.multires.caltech.edu/teaching/demos

/java/chaikin.htm

Limit Curve Surface




Doo-Sabin Subdivision

* Proposed by Doo and Sabin in 1978
* An extension of Chaiken’s algorithm to 3D mesh surfaces




Doo-Sabin Subdivision (2)

* An edge pointis formed from the midpoint of each edge

old vertex

edge point

face point




Doo-Sabin Subdivision (2)

e A face pointis formed as the centroid of each polygon
of the mesh.

old vertex

edge point

face point




Doo-Sabin Subdivision (2)

 Finally, each vertex in new mesh is formed as average of
— a vertex in the old mesh,
— a face point for a polygon that touches that old vertex, and
— the edge points for the two edges that belong to that polygon and
touch that old vertex.

old vertex

edge point

face point

i
T new vertex




Doo-Sabin Subdivision (3)

old vertex

edge point

new vertex
face point

The new mesh will be composed of
— quadrilaterals for each edge in the old mesh,



Doo-Sabin Subdivision (3)

old vertex

edge point

new vertex
face point

The new mesh will be composed of

— a smaller n-sided polygon for each n-sided polygon in
the old mesh, and



Doo-Sabin Subdivision (3)

old vertex

edge point

new vertex
face point

The new mesh will be composed of

— an n-sided poligon for each n-valence vertex (Valence
being the number of edges that touch the vertex).



Doo-Sabin Subdivision

* Proposed by Doo and Sabin in 1978
* An extension of Chaiken’s algorithm to 3D mesh surfaces

http://www.rose-hulman.edu/~finn/CCLI/Applets/DooSabinApplet.html



Catmull-Clark Subdivision

A face with n edges are subdivided into n
guadrilaterals

* Quads are better than triangles at capturing the
symmetries of natural and man-made objects.




Catmull-Clark Subdivision

©——+-@® VERTEX

n— 2

Iy

Yo &

1 1
V. +H_EZJ: Ej. —I—H—EZJ: fj.

http://www.rose-hulman.edu/~finn/CCLI/Applets
/CatmullClarkApplet.ntml



Modeling with Catmull-Clark

« Subdivision produces smooth continuous surfaces.

 How can “sharpness” and creases be controlled in a
modeling environment?

ANSWER: Define new subdivision rules for “creased”
edges and vertices.

Tag Edges sharp edges.

If an edge is sharp, apply new
sharp subdivision rules.

Otherwise subdivide with
normal rules.




Sharp Edges...

”

 Tag Edges as “sharp” or “ e
e« n=0-"- ? N /
* n>0-sharp
During Subdivision,

« if an edge is “sharp”, use sharp
subdivision rules. Newly created edges,
are assigned a sharpness of n-1. =i

« Ifanedgeis” ", use normal
smooth subdivision rules.

(1l

IDEA: Edges with a sharpness of “n” do “ u]
not get subdivided smoothly for “n”
iterations of the algorithm.

.In the picture on the right, the control
mesh is a unit cube 4

.Different sharpness applied




® FACE (unchanged)

Sharp Rules

1 1
f = ; Z 1”'?-;
1
® FEDGE
Vi ¥,
e — -
2
©-—+@® VERTEX
# ad|. Sharp edges
corner =
v:’+]
2
crease )




Another example of creases




Subdivision Surfaces in character
animation [DeRose98]

« Used for first time in
Geri’'s game to

overcome topological
restriction of NURBS

 Modeled Geri's head,
hands, jacket, pants,
shirt, tie, and shoes




Geri’'s Game

 Academy Award winning movie by Pixar
— Made by subdivision surface

[http://www.youtube.com/watch?v=1m7dcblKviw]

Demo of Catmull-Clark subdivision surface

http://www.youtube.com/watch?v=1U8f0hnorU8&feature=related



Adaptive Subdivision

* Not all regions of a model
need to be subdivided.

* |dea: Use some criteria and
adaptively subdivide mesh
where needed.

— Curvature
— Screen size ( make triangles
< size of pixel )
— View dependence
 Distance from viewer
« Silhouettes
* |n view frustum

— Careful! Must ensure that
“cracks” aren’t made




Subdivision Surface Summary

* Advantages
— Simple method for describing complex surfaces
— Relatively easy to implement
— Arbitrary topology
— Local support
— Guaranteed continuity
— Multi-resolution

* Difficulties
— Intuitive specification

— Parameterization
— Intersections



 Edwin Catmull
Utah — NYIT — Lucas Films — Pixar -

present: President of Disney Animation
Studios and Pixar Animation Studios

« Jim Clark

Utah — UCSC - Stanford — Silicon Graphlcs-
Netscape - ..

He also co-produced the mj



http://en.wikipedia.org/wiki/The_Cove_(film)

Readings

Shirley - 15.6.3, 15.6.4
Akenine-Moller - 13.5.4 (Catmull-Clark subdivision)

A very good website for parametric curves / surfaces
http://www.cs.mtu.edu/~shene/COURSES/cs3621/

DeRose, Tony, Michael Kass, and Tien Truong. Subdivision Surfaces in
Character Animation. SIGGRAPH 98.

Clark, E., and J. Clark. Recursively generated B-spline surfaces on arbitrary
t10 7oéogical meshes. Computer Aided Geometric Design, Vol. 10, No. 6,

Doo, D. and M. Sabin. Behavior of Recursive Division Surfaces Near
Extraordinary Points. Computer-Aided Design. Vol. 10, No. 6, 1978.



