
Computer Graphics

Lecture 16

Curves and Surfaces I



Characters and Objects 

• Important for composing the scene 
• Need to design and model them in the first place



Curves / curved surfaces

Can produce smooth surfaces with less parameters

• Easier to design 
• Can efficiently preserve complex structures 
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Today

• Parametric curves
– Introduction
– Hermite curves
– Bezier curves
– Uniform cubic B-splines
– Catmull-Rom spline

• Bicubic patches
• Tessellation 

– Adaptive tesselation
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Types of Curves and Surfaces 

• Explicit:
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Why parametric?

• Simple and flexible 
• The function of each coordinates can be defined 

independently.
(x(t), y(t)) : 1D curve in 2D space
(x(t), y(t), z(t)) : 1D curve in 3D space
(x(s,t), y(s,t), z(s,t)) : 2D surface in 3D space

• Polynomial are suitable for creating smooth surfaces 
with less computation

 

x(t) = a3t
3 + a2t

2 + a1t + a0



Today

• Parametric curves
– Introduction
– Hermite curves
– Bezier curves
– Uniform cubic B-splines
– Catmull-Rom spline

• Bicubic patches
• Tessellation 

– Adaptive tesselation
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Hermite curves

• A cubic polynomial 

x(t) = a
3
t3 + a

2
t2 + a

1
t + a

0

• t ranging from 0 to 1

• Polynomial can be specified by the position 
of, and gradient at, each endpoint of curve.
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Family of Hermite curves.
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x(t)

y(t)
Note : 
Start points on 
left.

10/10/http://www.rose-hulman.edu/~finn/CCLI/Applets/CubicHermiteApplet.html2008

http://www.rose-hulman.edu/~finn/CCLI/Applets/CubicHermiteApplet.html


Finding Hermite coefficients
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X(t) = a3t
3 + a2t

2 + a1t + a0,    X
’(t) = 3a3t

2 + 2a2t + a1

Substituting for t at each endpoint:

x0 = X(0) = a0                                  x0
’ = X’(0) = a1

x1 = X(1) = a3 + a2 + a1 + a0             x1
’= X’(1) = 3a3 + 2a2+ a1

And the solution is:

a0 = x0                                              a1 = x0
’ 

a2 = -3x0 – 2x0
’ + 3x1 – x1

’               a3 = 2x0 + x0
’- 2x1 + x1

’

X(t) = (2x0 + x0
’- 2x1 + x1

’ ) t3 + (-3x0 – 2x0
’ + 3x1 – x1

’ ) t2 + (x0
’ ) t + 

x0

Can solve them by using the boundary conditions

Equation and 
derivative
Want to 
compute ai



Finding Hermite coefficients
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boundary
conditions



Finding Hermite coefficients
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X(t) = a3t
3 + a2t

2 + a1t + a0,    X
’(t) = 3a3t

2 + 2a2t + a1

Substituting for t at each endpoint:
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X(t) = (2x0 + x0
’- 2x1 + x1

’ ) t3 + (-3x0 – 2x0
’ + 3x1 – x1

’ ) t2 + (x0
’ ) t + 

x0

Can solve them by using the boundary conditions

solving for coefficients 



The Hermite matrix: M
H
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The resultant polynomial can be expressed in matrix form:

X(t) = tTMHq              ( q is the control vector)

We can now define a parametric polynomial for each 
coordinate required independently, ie. X(t), Y(t) and Z(t)



Hermite Basis (Blending) Functions



Hermite Basis (Blending) Functions
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x0 x1

x0
/

x1
/

The graph shows the shape of the 
four basis functions – often called 
blending functions.

They are labelled with the elements 
of the control vector that they 
weight.

Note that at each end only position 
is non-zero, so the curve must 
touch the endpoints



Bézier Curves

• Hermite cubic curves are difficult to model – 
need to specify point and gradient.

• Paul de Casteljau who was working for Citroën, 
invented another way to compute the curves

• Publicised by Pierre Bézier from Renault
• By only giving points instead of the derivatives



Bézier Curves (2)
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Can define a curve by specifying 2 endpoints and 2 
additional control points

The two middle points are used to specify the gradient at 
the endpoints

Fit within the convex hull by the control points

http://www.rose-hulman.edu/~finn/CCLI/Applets/BezierBernsteinApplet.html

http://www.rose-hulman.edu/~finn/CCLI/Applets/BezierBernsteinApplet.html
http://www.rose-hulman.edu/~finn/CCLI/Applets/BezierBernsteinApplet.html


Bézier Matrix

• The cubic form is the most popular                        
X(t) = tTM

B
q   (M

B
 is the Bézier matrix)

• With    n=4   and   r=0,1,2,3    we get:

• Similarly for Y(t) and Z(t)

10/10/2008  



Bézier blending functions

10/10/2008  

This is how the 
polynomials for each 
coefficient looks like

The functions sum to 1 at 
any point along the curve.

Endpoints have full weight

The weights of each 
function is clear and the 
labels show the control 
points being weighted.

q0 q3

q1 q2



How to produce complex, long curves?

• We could only use 4 control points to design 
curves.

• What if we want to produce long curves with 
complex shapes.

• How do can we do that?
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Drawing Complex Long Curves
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● Using higher order curves
○ costly 
○ Need many multiplications

● Pierce together low order curves
○ Need to make sure the connection points are smooth

 



Continuity between curve segments

• If the direction and magnitude of d  / dt  [X(t)] are equal 
at the join point, the curve is called C   continuous 

• i.e.  if two curve segments are simply connected, the 
curve is C0 continuous

• If the tangent vectors of two cubic curve segments are 
equal at the join point, the curve is C1 continuous 

n
n



Continuity between curve segments

• If the directions (but not necessarily the magnitudes) of 
two segments’ tangent vectors are equal at the join 
point, the curve has G   continuity1



Continuity with Hermite and Bezier 
Curves

– How to achieve C0,C1,G1 continuity?



Joining Bezier Curves

• G  continuity is provided at the endpoint when 
P3 – P4 = k (P4 – P5) 

• if k=1, C  continuity is obtained 

1

1
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Uniform Cubic B-Splines
• Another popular form of curves 
• The curve does not necessarily pass through the 

control points 
• Can produce a longer continuous curve without 

worrying about the boundaries
• Has C2 continuity at the boundaries

http://www.rose-hulman.edu/~finn/CCLI/Applets/BSplineApplet.html

http://www.rose-hulman.edu/~finn/CCLI/Applets/BSplineApplet.html
http://www.rose-hulman.edu/~finn/CCLI/Applets/BSplineApplet.html
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Uniform Cubic B-Splines (2)
• The matrix form and the basis functions
• The knots specify the range of the curve 
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Uniform Cubic B-Splines (3)
• This is how the basis look like over the domain
• The initial part is defined after passing the fourth 

knot

3
t

m+1
0



Another usage of uniform cubic 
B-splines

• Representing the joint angle trajectories of 
characters and robots 

• Need more control points to represent a 
longer continuous movement  

• Need C2 continuity to make the acceleration 
smooth

• And not changing the torques suddenly



Catmull-Rom Spline

• A curve that interpolates control points
• The tangent vectors at the endpoints of a 

Hermite curve is set such that they are 
decided by the two surrounding control 
points



Catmull-Rom Spline

• C1 continuity



Today

• Parametric curves
– Introduction
– Hermite curves
– Bezier curves
– Uniform cubic B-splines
– Catmull-Rom spline

• Bicubic patches
• Tessellation 

– Adaptive tessellation
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Bicubic patches
• The concept of parametric curves can be 

extended to surfaces 

• The cubic parametric curve is in the form of Q(t)
=tTM q where q=(q1,q2,q3,q4) : qi control points, 
M is the basis matrix (Hermite or Bezier,…), tT=
(t3, t2, t, 1)



• Now we assume qi to vary along a parameter s,

•  Qi(s,t)=tTM [q1(s),q2(s),q3(s),q4(s)]

• qi(s) are themselves cubic curves, we can write 
them in the form …



Bicubic patches

where q is a 4x4 matrix
Each column contains the control points of 
q1(s),…,q4(s) 
x,y,z computed by 



Bézier example

• We compute (x,y,z) by 
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http://www.math.psu.
edu/dlittle/java/parametricequations/beziersurfaces/index.html

http://www.math.psu.edu/dlittle/java/parametricequations/beziersurfaces/index.html
http://www.math.psu.edu/dlittle/java/parametricequations/beziersurfaces/index.html
http://www.math.psu.edu/dlittle/java/parametricequations/beziersurfaces/index.html
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– Uniform cubic B-splines
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• Bicubic patches
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Displaying Bicubic patches.

• Directly rasterizing bicubic patches is not so easy 

• Need to convert the bicubic patches into a 
polygon mesh 
– tessellation

• Need to compute the normals
– vector cross product of the 2 tangent vectors.



Normal Vectors

Tangent vectors can be computed by computing the partial 
derivatives
Then computing the cross product of the two partial 
derivative vectors



Tessellation
• As computers are optimized for rendering 

triangles, the easiest way to display parametric 
surfaces is to convert them into triangle meshes

• The simplest way is to do uniform tessellation, 
which samples points uniformly in the parameter 
space

14/10/2008 Lecture 6  



Uniform Tessellation

• Sampling points uniformly with the parameters

• What are the problems with uniform tessellation?

• Which area needs more tessellation?

• Which area does not need much tessellation?



Adaptive Tessellation

• Adaptive tessellation – adapt the size of triangles to 
the shape of the surface

i.e., more triangles where the 
surface bends more 
On the other hand, for flat areas 
we do not need many triangles



Adaptive Tessellation
• For every triangle edges, check if each edge is 

tessellated enough (curveTessEnough())
• If all edges are tessellated enough, check if the 

whole triangle is tessellated enough as a whole 
(triTessEnough())

• If one or more of the edges or the triangle’s 
interior is not tessellated enough, then further 
tessellation is needed 



Adaptive Tessellation

• When an edge is not tessellated enough, a 
point is created halfway between the edge 
points’ uv-values 

• New triangles are created and the tessellator 
is once again called with the new triangles as 
input

Four cases of further tessellation



Adaptive Tessellation
AdaptiveTessellate(p,q,r)
• tessPQ=not curveTessEnough(p,q)
• tessQR=not curveTessEnough(q,r)
• tessRP=not curveTessEnough(r,p)
• If (tessPQ and tessQR and tessRP) 

– AdaptiveTessellate(p,(p+q)/2,(p+r)/2);
– AdaptiveTessellate(q,(q+r)/2,(q+p)/2);
– AdaptiveTessellate(r,(r+p)/2,(r+q)/2);
– AdaptiveTessellate((p+q)/2,(q+r)/2,(r+p)/2);

• else if (tessPQ and tessQR) 
– AdaptiveTessellate(p,(p+q)/2,r);
– AdaptiveTessellate((p+q)/2,(q+r)/2,r);
– AdaptiveTessellate((p+q)/2,q,(q+r)/2);

• else if (tessPQ) 
– AdaptiveTessellate(p,(p+q)/2,r);
– AdaptiveTessellate(q,r,(p+q)/2);

• Else if (not triTessEnough(p,q,r))
AdaptiveTessellate((p+q+r)/3,p,q); 
AdaptiveTessellate((p+q+r)/3,q,r); 
AdaptiveTessellate((p+q+r)/3,r,p); 

end;



curveTessEnough
• Say you are to judge whether ab needs 

tessellation
• You can compute the midpoint c, and compute 

the curve’s distance l from d, the midpoint of ab 
• Check if l/||a-b|| is under a threshold
• Can do something similar for triTessEnough

– Sample at the mass center and calculate its distance 
from the triangle

a b

c

d



On-the-fly tessellation

• In many cases, it is preferred to tessellate 
on-the-fly 

• The size of the data can be kept small

• Tessellation is a highly parallel process
– Can make use of the GPU 

• The shape may deform in real-time



On-the-fly tessellation

• So, say in a dynamic environment, what are 
the factors that we need to take into account 
when doing the tessellation?
– in addition to curvature?    



Other factors?



Other factors?



Other factors? 



Other factors to evaluate

• Inside the view frustum

• Front facing

• Occupying a large area in screen space

• Close to the silhouette of the object

• Illuminated by a significant amount of 
specular lighting



Summary

• Hermite, Bezier, B-Spline curves
• Bicubic patches
• Tessellation

• Triangulation of parametric surfaces
• On-the-fly tessellation



Reading for this lecture

• Foley et al. Chapter 11, section 11.2 up to and including 
11.2.3

• Introductory text Chapter 9, section 9.2 up to and 
including section 9.2.4

• Foley at al., Chapter 11, sections 11.2.3, 11.2.4, 11.2.9, 
11.2.10, 11.3 and 11.5.

• Introductory text, Chapter 9, sections 9.2.4, 9.2.5, 9.2.7, 
9.2.8 and 9.3.

• Real-time Rendering 2nd Edition Chapter 12.1-3
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