
Computer Graphics

Lecture 16

Curves and Surfaces I

Characters and Objects

• Important for composing the scene
• Need to design and model them in the first place

Curves / curved surfaces

Can produce smooth surfaces with less parameters

• Easier to design
• Can efficiently preserve complex structures

P
3

P
4

P
2

P
1

Today

• Parametric curves
– Introduction
– Hermite curves
– Bezier curves
– Uniform cubic B-splines
– Catmull-Rom spline

• Bicubic patches
• Tessellation

– Adaptive tesselation

10/10/2008 Lecture 5

Types of Curves and Surfaces

• Explicit:
 y = mx + b r = A

r
x + B

r
y + C

r

• Implicit:
 Ax + By + C = 0 (x – x

0
)2 + (y – y

0
)2 – r2 = 0

• Parametric:
 x = x

0
 + (x

1
 – x

0
)t x = x

0
 + rcosθ

 y = y
0
 + (y

1
 – y

0
)t y = y

0
 + rsinθ

Why parametric?

• Simple and flexible
• The function of each coordinates can be defined

independently.
(x(t), y(t)) : 1D curve in 2D space
(x(t), y(t), z(t)) : 1D curve in 3D space
(x(s,t), y(s,t), z(s,t)) : 2D surface in 3D space

• Polynomial are suitable for creating smooth surfaces
with less computation

x(t) = a3t
3 + a2t

2 + a1t + a0

Today

• Parametric curves
– Introduction
– Hermite curves
– Bezier curves
– Uniform cubic B-splines
– Catmull-Rom spline

• Bicubic patches
• Tessellation

– Adaptive tesselation

Lecture 5

Hermite curves

• A cubic polynomial

x(t) = a
3
t3 + a

2
t2 + a

1
t + a

0

• t ranging from 0 to 1

• Polynomial can be specified by the position
of, and gradient at, each endpoint of curve.

10/10/2008 Lecture 5

Family of Hermite curves.

10/10/2008 Lecture 5

x(t)

y(t)
Note :
Start points on
left.

10/10/http://www.rose-hulman.edu/~finn/CCLI/Applets/CubicHermiteApplet.html2008

http://www.rose-hulman.edu/~finn/CCLI/Applets/CubicHermiteApplet.html

Finding Hermite coefficients

10/10/2008 Lecture 5

X(t) = a3t
3 + a2t

2 + a1t + a0, X
’(t) = 3a3t

2 + 2a2t + a1

Substituting for t at each endpoint:

x0 = X(0) = a0 x0
’ = X’(0) = a1

x1 = X(1) = a3 + a2 + a1 + a0 x1
’= X’(1) = 3a3 + 2a2+ a1

And the solution is:

a0 = x0 a1 = x0
’

a2 = -3x0 – 2x0
’ + 3x1 – x1

’ a3 = 2x0 + x0
’- 2x1 + x1

’

X(t) = (2x0 + x0
’- 2x1 + x1

’) t3 + (-3x0 – 2x0
’ + 3x1 – x1

’) t2 + (x0
’) t +

x0

Can solve them by using the boundary conditions

Equation and
derivative
Want to
compute ai

Finding Hermite coefficients

10/10/2008 Lecture 5

X(t) = a3t
3 + a2t

2 + a1t + a0, X
’(t) = 3a3t

2 + 2a2t + a1

Substituting for t at each endpoint:

x0 = X(0) = a0 x0
’ = X’(0) = a1

x1 = X(1) = a3 + a2 + a1 + a0 x1
’= X’(1) = 3a3 + 2a2+ a1

And the solution is:

a0 = x0 a1 = x0
’

a2 = -3x0 – 2x0
’ + 3x1 – x1

’ a3 = 2x0 + x0
’- 2x1 + x1

’

X(t) = (2x0 + x0
’- 2x1 + x1

’) t3 + (-3x0 – 2x0
’ + 3x1 – x1

’) t2 + (x0
’) t +

x0

Can solve them by using the boundary conditions

boundary
conditions

Finding Hermite coefficients

10/10/2008 Lecture 5

X(t) = a3t
3 + a2t

2 + a1t + a0, X
’(t) = 3a3t

2 + 2a2t + a1

Substituting for t at each endpoint:

x0 = X(0) = a0 x0
’ = X’(0) = a1

x1 = X(1) = a3 + a2 + a1 + a0 x1
’= X’(1) = 3a3 + 2a2+ a1

And the solution is:

a0 = x0 a1 = x0
’

a2 = -3x0 – 2x0
’ + 3x1 – x1

’ a3 = 2x0 + x0
’- 2x1 + x1

’

X(t) = (2x0 + x0
’- 2x1 + x1

’) t3 + (-3x0 – 2x0
’ + 3x1 – x1

’) t2 + (x0
’) t +

x0

Can solve them by using the boundary conditions

solving for coefficients

The Hermite matrix: M
H

10/10/2008 Lecture 5

The resultant polynomial can be expressed in matrix form:

X(t) = tTMHq (q is the control vector)

We can now define a parametric polynomial for each
coordinate required independently, ie. X(t), Y(t) and Z(t)

Hermite Basis (Blending) Functions

Hermite Basis (Blending) Functions

10/10/2008 Lecture 5

x0 x1

x0
/

x1
/

The graph shows the shape of the
four basis functions – often called
blending functions.

They are labelled with the elements
of the control vector that they
weight.

Note that at each end only position
is non-zero, so the curve must
touch the endpoints

Bézier Curves

• Hermite cubic curves are difficult to model –
need to specify point and gradient.

• Paul de Casteljau who was working for Citroën,
invented another way to compute the curves

• Publicised by Pierre Bézier from Renault
• By only giving points instead of the derivatives

Bézier Curves (2)

10/10/2008 Lecture 5

P
2

P
1

P
4

P
3 P

3

P
4

P
2

P
1

Can define a curve by specifying 2 endpoints and 2
additional control points

The two middle points are used to specify the gradient at
the endpoints

Fit within the convex hull by the control points

http://www.rose-hulman.edu/~finn/CCLI/Applets/BezierBernsteinApplet.html

http://www.rose-hulman.edu/~finn/CCLI/Applets/BezierBernsteinApplet.html
http://www.rose-hulman.edu/~finn/CCLI/Applets/BezierBernsteinApplet.html

Bézier Matrix

• The cubic form is the most popular
X(t) = tTM

B
q (M

B
 is the Bézier matrix)

• With n=4 and r=0,1,2,3 we get:

• Similarly for Y(t) and Z(t)

10/10/2008

Bézier blending functions

10/10/2008

This is how the
polynomials for each
coefficient looks like

The functions sum to 1 at
any point along the curve.

Endpoints have full weight

The weights of each
function is clear and the
labels show the control
points being weighted.

q0 q3

q1 q2

How to produce complex, long curves?

• We could only use 4 control points to design
curves.

• What if we want to produce long curves with
complex shapes.

• How do can we do that?

10/10/2008 Lecture 5

.

Drawing Complex Long Curves

10/10/2008 Lecture 5

● Using higher order curves
○ costly
○ Need many multiplications

● Pierce together low order curves
○ Need to make sure the connection points are smooth

Continuity between curve segments

• If the direction and magnitude of d / dt [X(t)] are equal
at the join point, the curve is called C continuous

• i.e. if two curve segments are simply connected, the
curve is C0 continuous

• If the tangent vectors of two cubic curve segments are
equal at the join point, the curve is C1 continuous

n
n

Continuity between curve segments

• If the directions (but not necessarily the magnitudes) of
two segments’ tangent vectors are equal at the join
point, the curve has G continuity1

Continuity with Hermite and Bezier
Curves

– How to achieve C0,C1,G1 continuity?

Joining Bezier Curves

• G continuity is provided at the endpoint when
P3 – P4 = k (P4 – P5)

• if k=1, C continuity is obtained

1

1

Lecture 5

Uniform Cubic B-Splines
• Another popular form of curves
• The curve does not necessarily pass through the

control points
• Can produce a longer continuous curve without

worrying about the boundaries
• Has C2 continuity at the boundaries

http://www.rose-hulman.edu/~finn/CCLI/Applets/BSplineApplet.html

http://www.rose-hulman.edu/~finn/CCLI/Applets/BSplineApplet.html
http://www.rose-hulman.edu/~finn/CCLI/Applets/BSplineApplet.html

10/10/2008 Lecture 5

Uniform Cubic B-Splines (2)
• The matrix form and the basis functions
• The knots specify the range of the curve

10/10/2008 Lecture 5

Uniform Cubic B-Splines (3)
• This is how the basis look like over the domain
• The initial part is defined after passing the fourth

knot

3
t

m+1
0

Another usage of uniform cubic
B-splines

• Representing the joint angle trajectories of
characters and robots

• Need more control points to represent a
longer continuous movement

• Need C2 continuity to make the acceleration
smooth

• And not changing the torques suddenly

Catmull-Rom Spline

• A curve that interpolates control points
• The tangent vectors at the endpoints of a

Hermite curve is set such that they are
decided by the two surrounding control
points

Catmull-Rom Spline

• C1 continuity

Today

• Parametric curves
– Introduction
– Hermite curves
– Bezier curves
– Uniform cubic B-splines
– Catmull-Rom spline

• Bicubic patches
• Tessellation

– Adaptive tessellation

10/10/2008 Lecture 5

Bicubic patches
• The concept of parametric curves can be

extended to surfaces

• The cubic parametric curve is in the form of Q(t)
=tTM q where q=(q1,q2,q3,q4) : qi control points,
M is the basis matrix (Hermite or Bezier,…), tT=
(t3, t2, t, 1)

• Now we assume qi to vary along a parameter s,

• Qi(s,t)=tTM [q1(s),q2(s),q3(s),q4(s)]

• qi(s) are themselves cubic curves, we can write
them in the form …

Bicubic patches

where q is a 4x4 matrix
Each column contains the control points of
q1(s),…,q4(s)
x,y,z computed by

Bézier example

• We compute (x,y,z) by

14/10/2008 Lecture 6

http://www.math.psu.
edu/dlittle/java/parametricequations/beziersurfaces/index.html

http://www.math.psu.edu/dlittle/java/parametricequations/beziersurfaces/index.html
http://www.math.psu.edu/dlittle/java/parametricequations/beziersurfaces/index.html
http://www.math.psu.edu/dlittle/java/parametricequations/beziersurfaces/index.html

Today

• Parametric curves
– Introduction
– Hermite curves
– Bezier curves
– Uniform cubic B-splines
– Catmull-Rom spline

• Bicubic patches
• Tessellation

– Adaptive tessellation

10/10/2008 Lecture 5

Displaying Bicubic patches.

• Directly rasterizing bicubic patches is not so easy

• Need to convert the bicubic patches into a
polygon mesh
– tessellation

• Need to compute the normals
– vector cross product of the 2 tangent vectors.

Normal Vectors

Tangent vectors can be computed by computing the partial
derivatives
Then computing the cross product of the two partial
derivative vectors

Tessellation
• As computers are optimized for rendering

triangles, the easiest way to display parametric
surfaces is to convert them into triangle meshes

• The simplest way is to do uniform tessellation,
which samples points uniformly in the parameter
space

14/10/2008 Lecture 6

Uniform Tessellation

• Sampling points uniformly with the parameters

• What are the problems with uniform tessellation?

• Which area needs more tessellation?

• Which area does not need much tessellation?

Adaptive Tessellation

• Adaptive tessellation – adapt the size of triangles to
the shape of the surface

i.e., more triangles where the
surface bends more
On the other hand, for flat areas
we do not need many triangles

Adaptive Tessellation
• For every triangle edges, check if each edge is

tessellated enough (curveTessEnough())
• If all edges are tessellated enough, check if the

whole triangle is tessellated enough as a whole
(triTessEnough())

• If one or more of the edges or the triangle’s
interior is not tessellated enough, then further
tessellation is needed

Adaptive Tessellation

• When an edge is not tessellated enough, a
point is created halfway between the edge
points’ uv-values

• New triangles are created and the tessellator
is once again called with the new triangles as
input

Four cases of further tessellation

Adaptive Tessellation
AdaptiveTessellate(p,q,r)
• tessPQ=not curveTessEnough(p,q)
• tessQR=not curveTessEnough(q,r)
• tessRP=not curveTessEnough(r,p)
• If (tessPQ and tessQR and tessRP)

– AdaptiveTessellate(p,(p+q)/2,(p+r)/2);
– AdaptiveTessellate(q,(q+r)/2,(q+p)/2);
– AdaptiveTessellate(r,(r+p)/2,(r+q)/2);
– AdaptiveTessellate((p+q)/2,(q+r)/2,(r+p)/2);

• else if (tessPQ and tessQR)
– AdaptiveTessellate(p,(p+q)/2,r);
– AdaptiveTessellate((p+q)/2,(q+r)/2,r);
– AdaptiveTessellate((p+q)/2,q,(q+r)/2);

• else if (tessPQ)
– AdaptiveTessellate(p,(p+q)/2,r);
– AdaptiveTessellate(q,r,(p+q)/2);

• Else if (not triTessEnough(p,q,r))
AdaptiveTessellate((p+q+r)/3,p,q);
AdaptiveTessellate((p+q+r)/3,q,r);
AdaptiveTessellate((p+q+r)/3,r,p);

end;

curveTessEnough
• Say you are to judge whether ab needs

tessellation
• You can compute the midpoint c, and compute

the curve’s distance l from d, the midpoint of ab
• Check if l/||a-b|| is under a threshold
• Can do something similar for triTessEnough

– Sample at the mass center and calculate its distance
from the triangle

a b

c

d

On-the-fly tessellation

• In many cases, it is preferred to tessellate
on-the-fly

• The size of the data can be kept small

• Tessellation is a highly parallel process
– Can make use of the GPU

• The shape may deform in real-time

On-the-fly tessellation

• So, say in a dynamic environment, what are
the factors that we need to take into account
when doing the tessellation?
– in addition to curvature?

Other factors?

Other factors?

Other factors?

Other factors to evaluate

• Inside the view frustum

• Front facing

• Occupying a large area in screen space

• Close to the silhouette of the object

• Illuminated by a significant amount of
specular lighting

Summary

• Hermite, Bezier, B-Spline curves
• Bicubic patches
• Tessellation

• Triangulation of parametric surfaces
• On-the-fly tessellation

Reading for this lecture

• Foley et al. Chapter 11, section 11.2 up to and including
11.2.3

• Introductory text Chapter 9, section 9.2 up to and
including section 9.2.4

• Foley at al., Chapter 11, sections 11.2.3, 11.2.4, 11.2.9,
11.2.10, 11.3 and 11.5.

• Introductory text, Chapter 9, sections 9.2.4, 9.2.5, 9.2.7,
9.2.8 and 9.3.

• Real-time Rendering 2nd Edition Chapter 12.1-3

10/10/2008 Lecture 5

