
Computer Graphics

Lecture 14
Bump-mapping, Global Illumination (1)

Today

- Bump mapping
- Displacement mapping
- Global Illumination
 Radiosity

Bump Mapping

- A method to increase the
 realism of 3D objects without
 editing their geometry
- By adding high resolution
 bump maps
- In a way similar to
 texture mapping

What's Missing?
• What's the difference between a real

brick wall and a photograph of the
wall texture-mapped onto a plane?

No shadows between
the bricks

This is what we want

How do we achieve this?
• High resolution brick wall?
• - Difficult to prepare the model
• - Very costly to handle during run-time

Bump Mapping
● Use textures to alter the surface normal but not

the geometry
● Done during the rasterization stage

○ Can synthesize realistic images without using high
resolution meshes

Sphere w/Diffuse
Texture

Swirly Bump
Map

Sphere w/Diffuse Texture & Bump
Map

Preparing Data

Cylinder w/Texture Map & Bump Map

Prepare a bump map whose values change from 0 to
1
Prepare a mapping of vertices to uv coordinates

Procedure

u= α u1 + β u2 + γ u3

v = α v1 + β v2 + γ v3

• During rasterization, compute the barycentric coordinates
of the pixel and compute its uv coordinates by
interpolation

• Lookup the bump map and compute the finite difference
of the bump map (Fu, Fv) = (dF/du, dF/dv)

Procedure - continued
• When rasterizing a pixel in the triangle, compute

the original normal vector n and the its uv
coordinates by barycentric coordinates

• Perturb the normal vector by

where (Fu, Fv) are the partial derivatives of the bump
map, and Pu, Pv are the partial derivative of the
geometry with respect to the uv
• Do the lighting computation using n’

Computing Fu, Fv

• Simply compute the finite
difference of the height map
at the corresponding uv

u

v

Computing Pu, Pv

u

v

How P changes according to u,
v in the texture space

Or compute Pu, Pv in screen
space using chain rule

x

y

Or compute Pu, Pv in screen
space using chain rule

These can be computed in the
screen space by finite difference

x

y

Or compute Pu, Pv in screen
space using chain rule

x

y

where

Preparing Bump Maps
• Can be produced from photos or designed by the user
• If it is from an image, convert the image to greyscale
• Adjust the contrast, such the min is 0 and max is 1
• White part bumps out and black color bump inwards

• Need to make sure there is no specular highlights
in the image

Some more examples

Some more examples

Some more examples

What's Missing?

• There are no actual bumps
on the silhouette of a
bump-mapped object

Displacement Mapping
• - Use the texture to actually move the surface point
• - The texture is a 3D mesh defined in the uv space

How it works
1. 1. Tessellate (subdivide) the base polygon mesh such that its

resolution is same as the displacement map
2. 2. Move each vertex in the normal direction of the base

polygon mesh as much as the height in the displacement
map

Displacement Mapping:
Discussions

● The cost increases as the polygon numbers is
high

● Done in the geometry stage and not in the
rasterization stage

● Can adaptively tessellate the base polygon mesh
for the region the spatial frequency is high

● Methods to do it in the image space are getting
popular

Today

- Bump mapping
- Displacement mapping
- Global Illumination
 Radiosity

Background

□ Rendering methods can be classified
into
■ Local Illumination techniques
■ Global Illumination techniques

Local Illumination methods

❑ Considers light sources and surface properties only.
❑ Phong Illumination, Phong shading, Gouraud Shading

❑ Very fast
❑ Used for real-time applications such as 3D computer

games

Local Illumination : problems

❑ Images synthesized appear artificial
❑ No inter-surface reflections
❑ Ambient light is a very simplified model

❑ Requires the user to add the effects like shadows
and mirrors one by one

■ Shadow maps, shadow volume, shadow texture for
producing shadows

■ Mirroring by reflecting the world or environment
mapping

Global Illumination

□ In the real-world, light comes from all directions
(ambient light)

□ This is due to inter-reflections
□ Global illumination methods handle such effects

Global Illumination

□ Methods
□ Radiosity
□ Monte-Carlo ray tracing, Photon Mapping

□ Requires more computation and is slow

The Radiosity Method (85’-)

□ Based on a method developed by
researchers in heat transfer in
1950s

□ Applied to computer graphics in
the mid 1980s by
□ Michael Cohen
□ Tomoyuki Nishita

The Radiosity Method (85’-)

□ Can simulate inter-surface
reflection

□ Can produce nice ambient effects
□ Can simulate effects such as

□ Soft shadows,
□ color bleeding

Can only handle diffuse color
→ need to be combined with ray-

tracing to handle specular light

Color
bleeding

Color Bleeding

The Radiosity Model

□ At each surface in a model the amount of energy
that is given off (Radiosity) is comprised of
■ the energy that the surface emits internally (E), plus
■ the amount of energy that is reflected off the surface

(ρH)

Bj Eq. 1

The Radiosity Model (2)
□ The amount of incident light hitting the

surface can be found by summing for all other
surfaces the amount of energy that they
contribute to this surface

Form factor

Eq. 2

Form Factor (Fij)
□ The fraction of energy that leaves surface i and

lands on surface j
□ Between differential areas, it is

□ The overall form factor between i and j is

Form Factor (2)
□ Also need to take into account occlusions
□ The form factor for those faces which are

hidden from each other must be zero

The Radiosity Matrix

The radiosity equation now looks like this:

The derived radiosity equations form a set of N linear
equations in N unknowns. This leads nicely to a matrix
solution:

 Solve for Bi – Use methods like Gauss-Seidal

Radiosity Steps:

1. Generate Model (set up the scene)
2. Compute Form Factors and set the

Radiosity Matrix
3. Solve the linear system
4. Render the scene

Radiosity Steps:

1. Generate Model (set up the scene)
2. Compute Form Factors and set the

Radiosity Matrix
3. Solve the linear system
4. Render the scene

Radiosity Steps:

1. Generate Model (set up the scene)
2. Compute Form Factors and set the

Radiosity Matrix
3. Solve the linear system
4. Render the scene

Radiosity Steps:

1. Generate Model (set up the scene)
2. Compute Form Factors and set the

Radiosity Matrix
3. Solve the linear system
4. Render the scene

Radiosity Steps:
1. Generate Model
2. Compute Form Factors and set the Radiosity Matrix
3. Solve the linear system
4. Render the scene

● Where do we resume from if objects are moved?
● Where do we resume from if the lighting is

changed?
● Where do we resume from if the reflectance

parameters of the scene are modified?
● Where do we resume from if the view point

changes?

Radiosity Features:

□ Very costly
□ The faces must be subdivided into small

patches to reduce the artefacts
□ The computational cost for calculating the

form factors is expensive
□ Quadratic to the number of patches

□ Solving for Bi is also very costly
□ Cubic to the number of patches

□ Cannot handle specular light

Hemicube: by Michael Cohen’
85
 □ Accelerates the computation
of the form factor

□ The form factor for the right
four faces with respect to a
small patch in the bottom is
the same

□ Then, we can project the
patches onto a hemicube

Hemicube (2)
□ Prepare a hemicube around

the patch i
□ Project those polygons you

want to compute the form
factor with patch i onto the
hemicube

□ Then, compute the form
factor between them

Hemicube (3)
□ This can be done by perspective

projection
□ We can use the Z-buffer algorithm

to find the closest polygon
□ Handling the occlusion
□ Setting the form factor of the
 pairs that occlude
 each other to zero

Hemicube (4)
□ The form factor between

each pixel of the hemicube
and the patch at the origin
can be pre-computed and
saved in a table

□ Only 1/8 of all are needed,
thanks to symmetry

Summary

□ Bump maps can be used to increase the
reality without increasing the resolution
of the meshes

□ Global illumination methods simulate
inter-reflectance

□ Radiosity can simulate diffuse inter-
reflectance

□ The form factor computation can be
accelerated by hemi-cube.

Readings
• Blinn, "Simulation of Wrinkled Surfaces", Computer

Graphics, (Proc. Siggraph), Vol. 12, No. 3, August 1978, pp.
286-292.

• Real-time Rendering, Chapter 5,1-5.2
• http://www.blacksmith-studios.

dk/projects/downloads/tangent_matrix_deriv
ation.php

• Cohen et al., The hemi-cube: a radiosity solution for
complex environments, SIGGRAPH ‘85

http://www.blacksmith-studios.dk/projects/downloads/tangent_matrix_derivation.php
http://www.blacksmith-studios.dk/projects/downloads/tangent_matrix_derivation.php
http://www.blacksmith-studios.dk/projects/downloads/tangent_matrix_derivation.php
http://www.blacksmith-studios.dk/projects/downloads/tangent_matrix_derivation.php

