Today

- Bump mapping
- Displacement mapping
- Global Illumination
 Radiosity
Bump Mapping

- A method to increase the realism of 3D objects without editing their geometry
- By adding high resolution bump maps
- In a way similar to texture mapping
What's Missing?

What's the difference between a real brick wall and a photograph of the wall texture-mapped onto a plane?

No shadows between the bricks
This is what we want
How do we achieve this?

High resolution brick wall?
- Difficult to prepare the model
- Very costly to handle during run-time
Bump Mapping

- Use textures to alter the surface normal but not the geometry
- Done during the rasterization stage
 - Can synthesize realistic images without using high resolution meshes
Preparing Data

Prepare a bump map whose values change from 0 to 1
Prepare a mapping of vertices to uv coordinates
Procedure

- During rasterization, compute the barycentric coordinates of the pixel and compute its uv coordinates by interpolation.
- Lookup the bump map using the uv coordinates.
- Compute the finite difference of the bump map \((F_u, F_v) = (dF/du, dF/dv)\)

\[
\begin{align*}
 u &= \alpha u_1 + \beta u_2 + \gamma u_3 \\
 v &= \alpha v_1 + \beta v_2 + \gamma v_3
\end{align*}
\]
Procedure - continued

- When rasterizing a pixel in the triangle, compute the original normal vector \mathbf{n} and the its uv coordinates by barycentric coordinates.
- Perturb the normal vector by

$$
\mathbf{n}' = \mathbf{n} + \frac{F_u (\mathbf{n} \times \mathbf{P}_v) - F_v (\mathbf{n} \times \mathbf{P}_u)}{||\mathbf{n}||}
$$

where (F_u, F_v) are the partial derivatives of the bump map, and $\mathbf{P}_u, \mathbf{P}_v$ are the partial derivative of the geometry with respect to the uv.

- Do the lighting computation using \mathbf{n}'
Computing Fu, Fv

• Simply compute the finite difference of the height map at the corresponding uv
Computing P_u, P_v

How P changes according to u,v in the texture space

$$P = (P_x, P_y, P_z)$$

$$P_u = \left(\frac{\partial P_x}{\partial u}, \frac{\partial P_y}{\partial u}, \frac{\partial P_z}{\partial u} \right),$$

$$P_v = \left(\frac{\partial P_x}{\partial v}, \frac{\partial P_y}{\partial v}, \frac{\partial P_z}{\partial v} \right)$$

1. Map the 3D coordinates of the triangle (\mathbf{Ps}) back into the uv space and compute its finite difference (P_u, P_v are same within the triangle)

2. Use the chain rule
Or compute P_u, P_v in screen space using chain rule

\[
\frac{\partial P}{\partial x} = \frac{\partial P}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial P}{\partial v} \frac{\partial v}{\partial x}
\]

\[
\frac{\partial P}{\partial y} = \frac{\partial P}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial P}{\partial v} \frac{\partial v}{\partial y}.
\]
Or compute \(Pu, Pv \) in screen space using chain rule

\[
\frac{\partial P}{\partial x} = \frac{\partial P}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial P}{\partial v} \frac{\partial v}{\partial x} \\
\frac{\partial P}{\partial y} = \frac{\partial P}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial P}{\partial v} \frac{\partial v}{\partial y}.
\]

These can be computed in the screen space by finite difference

\[
\frac{\partial u}{\partial x} = \frac{u_{i+1,j} - u_{i-1,j}}{2d} \\
\frac{\partial u}{\partial y} = \frac{u_{i,j+1} - u_{i,j-1}}{2d} \\
\frac{\partial v}{\partial x} = \frac{v_{i+1,j} - v_{i-1,j}}{2d} \\
\frac{\partial v}{\partial y} = \frac{v_{i,j+1} - v_{i,j-1}}{2d}.
\]
Or compute \(Pu, Pv \) in screen space using chain rule

\[
\begin{bmatrix}
\frac{\partial P}{\partial u} \\
\frac{\partial P}{\partial v}
\end{bmatrix} = \frac{1}{M} \begin{bmatrix}
\frac{\partial v}{\partial y} & -\frac{\partial v}{\partial x} \\
-\frac{\partial u}{\partial y} & \frac{\partial u}{\partial x}
\end{bmatrix} \begin{bmatrix}
\frac{\partial P}{\partial x} \\
\frac{\partial P}{\partial y}
\end{bmatrix}
\]

where

\[
M = \frac{\partial v}{\partial y} \frac{\partial u}{\partial x} - \frac{\partial v}{\partial x} \frac{\partial u}{\partial y}
\]
Preparing Bump Maps

- Can be produced from photos or designed by the user
- If it is from an image, convert the image to greyscale
- Adjust the contrast, such the min is 0 and max is 1
- White part bumps out and black color bump inwards
- Need to make sure there is no specular highlights in the image
Some more examples
Some more examples
Some more examples
What's Missing?

There are no actual bumps on the silhouette of a bump-mapped object.
Displacement Mapping

- Use the texture to actually move the surface point
- The texture is a 3D mesh defined in the uv space
How it works

1. Tessellate (subdivide) the base polygon mesh such that its resolution is same as the displacement map
2. Move each vertex in the normal direction of the base polygon mesh as much as the height in the displacement map
Displacement Mapping: Discussions

- The cost increases as the polygon numbers is high
- Done in the geometry stage and not in the rasterization stage
- Can adaptively tessellate the base polygon mesh for the region the spatial frequency is high
Today

- Bump mapping
- Displacement mapping
- Global Illumination
 Radiosity
Background

- Rendering methods can be classified into
 - Local Illumination techniques
 - Global Illumination techniques
Local Illumination methods

- Considers light sources and surface properties only.
 - Phong Illumination, Phong shading, Gouraud Shading
- Very fast
 - Used for real-time applications such as 3D computer games
Local Illumination : problems

- Images synthesized appear artificial
 - No inter-surface reflections
 - Ambient light is a very simplified model
- Requires the user to add the effects like shadows and mirrors one by one
 - Shadow maps, shadow volume, shadow texture for producing shadows
 - Mirroring by reflecting the world or environment mapping
Global Illumination

- In the real-world, light comes from all directions (ambient light)
- This is due to inter-reflections
- Global illumination methods handle such effects
Global Illumination

- Methods
 - Radiosity
 - Monte-Carlo ray tracing, Photon Mapping
- Requires more computation and is slow
The Radiosity Method (85’-)

- Based on a method developed by researchers in heat transfer in 1950s
- Applied to computer graphics in the mid 1980s by
 - Michael Cohen
 - Tomoyuki Nishita
The Radiosity Method (85’-)

- Can simulate inter-surface reflection
- Can produce nice ambient effects
- Can simulate effects such as
 - Soft shadows,
 - color bleeding
Can only handle diffuse color
→ need to be combined with ray-tracing to handle specular light
Color bleeding
Color Bleeding
The Radiosity Model

- At each surface in a model the amount of energy that is given off (Radiosity) is comprised of:
 - the energy that the surface emits internally \((E)\), plus
 - the amount of energy that is reflected off the surface \((\rho H)\)

\[
B_j = \rho_j H_j + E_j
\]

- \(B_j\) is the radiosity of surface \(j\),
- \(\rho_j\) is the reflectivity of surface \(j\),
- \(E_j\) is the energy emitted by surface \(j\),
- \(H_j\) is the energy incident on surface \(j\)
The Radiosity Model (2)

- The amount of incident light hitting the surface can be found by summing for all other surfaces the amount of energy that they contribute to this surface.

\[H_j = \sum_{i=1}^{N} B_i F_{i,j} \]

Form factor
Form Factor (\(F_{ij}\))

- The fraction of energy that leaves surface \(i\) and lands on surface \(j\)
- Between differential areas, it is
 \[
 \frac{\cos \phi_i \cos \phi_j}{\pi |r|^2} \ dA_i dA_j
 \]
- The overall form factor between \(i\) and \(j\) is
 \[
 F_{ij} = \sum_i \sum_j \frac{\cos \phi_i \cos \phi_j}{\pi |r|^2} \ dA_i dA_j
 \]
Form Factor (2)

- Also need to take into account occlusions
- The form factor for those faces which are hidden from each other must be zero
The Radiosity Matrix

The radiosity equation now looks like this:

\[B_j = E_j + \rho_j \sum_{i=1}^{N} B_i F_{i,j} \]

The derived radiosity equations form a set of \(N \) linear equations in \(N \) unknowns. This leads nicely to a matrix solution:

\[
\begin{pmatrix}
1 - \rho_1 F_{11} & -\rho_1 F_{12} & \ldots & -\rho_1 F_{1N} \\
-\rho_2 F_{21} & 1 - \rho_2 F_{22} & \ldots & -\rho_2 F_{2N} \\
\vdots & \vdots & \ddots & \vdots \\
-\rho_N F_{N1} & -\rho_N F_{N2} & \ldots & 1 - \rho_N F_{NN}
\end{pmatrix}
\begin{pmatrix}
B_1 \\
B_2 \\
\vdots \\
B_N
\end{pmatrix}
=
\begin{pmatrix}
E_1 \\
E_2 \\
\vdots \\
E_N
\end{pmatrix}
\]

Solve for \(B_i \) – Use methods like Gauss-Seidel
Radiosity Steps:

1. Generate Model (set up the scene)
2. Compute Form Factors and set the Radiosity Matrix
3. Solve the linear system
4. Render the scene
Radiosity Steps:

1. Generate Model (set up the scene)

2. Compute Form Factors and set the Radiosity Matrix

3. Solve the linear system

4. Render the scene

\[
\begin{pmatrix}
1 - \rho_1 F_{11} & -\rho_1 F_{12} & \cdots & -\rho_1 F_{1N} \\
-\rho_2 F_{21} & 1 - \rho_2 F_{22} & \cdots & -\rho_2 F_{2N} \\
\vdots & \vdots & \ddots & \vdots \\
-\rho_N F_{N1} & -\rho_N F_{N2} & \cdots & 1 - \rho_N F_{NN}
\end{pmatrix}
\begin{pmatrix}
B_1 \\
B_2 \\
\vdots \\
B_N
\end{pmatrix}
=
\begin{pmatrix}
E_1 \\
E_2 \\
\vdots \\
E_N
\end{pmatrix}
\]
Radiosity Steps:

1. Generate Model (set up the scene)
2. Compute Form Factors and set the Radiosity Matrix
3. Solve the linear system
4. Render the scene

\[
\begin{pmatrix}
1 - \rho_1 F_{11} & -\rho_1 F_{12} & \ldots & -\rho_1 F_{1N} \\
-\rho_2 F_{21} & 1 - \rho_2 F_{22} & \ldots & -\rho_2 F_{2N} \\
\vdots & \vdots & \ddots & \vdots \\
-\rho_N F_{N1} & -\rho_N F_{N2} & \ldots & 1 - \rho_N F_{NN}
\end{pmatrix}
\begin{pmatrix}
B_1 \\
B_2 \\
\vdots \\
B_N
\end{pmatrix}
=
\begin{pmatrix}
E_1 \\
E_2 \\
\vdots \\
E_N
\end{pmatrix}
\]
Radiosity Steps:

1. Generate Model (set up the scene)
2. Compute Form Factors and set the Radiosity Matrix
3. Solve the linear system
4. Render the scene

\[
\begin{pmatrix}
1 - \rho_1 F_{11} & -\rho_1 F_{12} & \ldots & -\rho_1 F_{1N} \\
-\rho_2 F_{21} & 1 - \rho_2 F_{22} & \ldots & -\rho_2 F_{2N} \\
\vdots & \vdots & \ddots & \vdots \\
-\rho_N F_{N1} & -\rho_N F_{N2} & \ldots & 1 - \rho_N F_{NN}
\end{pmatrix}
\begin{pmatrix}
B_1 \\
B_2 \\
\vdots \\
B_N
\end{pmatrix}
=
\begin{pmatrix}
E_1 \\
E_2 \\
\vdots \\
E_N
\end{pmatrix}
\]
Radiosity Steps:

1. Generate Model
2. Compute Form Factors and set the Radiosity Matrix
3. Solve the linear system
4. Render the scene

\[
\begin{pmatrix}
1 - \rho_1 F_{11} & -\rho_1 F_{12} & \cdots & -\rho_1 F_{1N} \\
-\rho_2 F_{21} & 1 - \rho_2 F_{22} & \cdots & -\rho_2 F_{2N} \\
\vdots & \vdots & \ddots & \vdots \\
-\rho_N F_{N1} & -\rho_N F_{N2} & \cdots & 1 - \rho_N F_{NN}
\end{pmatrix}
\begin{pmatrix}
B_1 \\
B_2 \\
\vdots \\
B_N
\end{pmatrix}
=
\begin{pmatrix}
E_1 \\
E_2 \\
\vdots \\
E_N
\end{pmatrix}
\]

- Where do we resume from if objects are moved?
- Where do we resume from if the lighting is changed?
- Where do we resume from if the reflectance parameters of the scene are modified?
- Where do we resume from if the viewpoint changes?
Radiosity Features:

- Very costly
- The faces must be subdivided into small patches to reduce the artefacts
- The computational cost for calculating the form factors is expensive
 - Quadratic to the number of patches
- Solving for B_i is also very costly
 - Cubic to the number of patches
- Cannot handle specular light
Hemicube: by Michael Cohen’85

- Accelerates the computation of the form factor
- The form factor for the right four faces with respect to a small patch in the bottom is the same
- Then, we can project the patches onto a hemicube
Hemicube (2)

- Prepare a hemicube around the patch i
- Project those polygons you want to compute the form factor with patch i onto the hemicube
- Then, compute the form factor between them
Hemicube (3)

- This can be done by perspective projection
- We can use the Z-buffer algorithm to find the closest polygon
 - Handling the occlusion
 - Setting the form factor of the pairs that occlude each other to zero
Hemicube (4)

- The form factor between each pixel of the hemicube and the patch at the origin can be pre-computed and saved in a table.
- Only 1/8 of all are needed, thanks to symmetry.
Summary

- Bump maps can be used to increase the reality without increasing the resolution of the meshes.
- Global illumination methods simulate inter-reflectance.
- Radiosity can simulate diffuse inter-reflectance.
- The form factor computation can be accelerated by hemi-cube.
Readings

• Real-time Rendering, Chapter 5,1-5.2
• Cohen et al., The hemi-cube: a radiosity solution for complex environments, SIGGRAPH ‘85