
*

Computer Graphics

Lecture 13
Hidden Surface Removal / Transparency

Taku Komura

*

Overview
Hidden Surface Removal

●Painter’s algorithm
●Z-buffer
●BSP tree
●Portal culling
●Back face culling

●Transparency
●Alpha blending
●Screen door transparency

*

Why Hidden Surface Removal?
● A correct rendering requires correct visibility

calculations
● When multiple opaque polygons cover the same screen

space, only the closest one is visible (remove the other
hidden surfaces) Painter’s algorithm, Z-buffer

 wrong visibility correct visibility

*

Overview
Hidden Surface Removal

●Painter’s algorithm
●Z-buffer
●BSP tree
●Portal culling
●Back face culling

●Transparency
●Alpha blending
●Screen door transparency

*

Painters algorithm

● Draw surfaces in back to front order – nearer
polygons “paint” over farther ones.

● Need to decide the order to draw – far objects first

*

Painters algorithm
● Key issue is order

determination.
● Doesn’t always work

– see image at right.

*

Painters algorithm
● Another situation it

does not work
● In both cases, we

need to segment the
triangles and make
them sortable

*

Z-buffer

● An image-based method applied during the
rasterization stage

● A standard approach implemented in most
graphics libraries

● Easy to be implemented on hardware
● By Wolfgang Straßer in 1974

*

Z-buffer

Basic Z-buffer idea:
For every input polygon
● For every pixel in the polygon interior, calculate its

corresponding z value (by interpolation)
● Compare the depth value with the closest value from

a different polygon (largest z) so far
● Paint the pixel with the color of the polygon if it is

closer

*

Z

*

*

*

*

*

Why is Z-buffering so popular ?
Advantage
•Simple to implement in hardware.

–Memory for z-buffer is now not expensive
•Diversity of primitives – not just polygons.
•Unlimited scene complexity
•No need to sort the objects
•No need to calculate object-object intersections.
Disadvantage
•Waste time drawing hidden objects
•Z-precision errors (aliasing problems)

Z-buffer aliasing

*

Z-buffer performance
•Memory overhead: O(1)
•Time to resolve visibility to screen precision: O(n)

–n: number of polygons
–Need to be combined with other culling methods to

reduce complexity

*

Rendering Complex Scenes

● We don’t want to waste computational
resources rendering primitives which
don’t contribute to the final image
○ Drawing polygonal faces on screen

consumes CPU cycles
○ e.g. Illumination

*

Rendering Complex Scenes (2)

•We better sort the polygons according to the depth
•coming back to the painter’s algorithm

•And only draw those close to the viewer

 BSP Tree, Portal culling

*

BSP Tree
•A tree structure that represents the scene
•Constructed by a detailed scene analysis
•Scene is then drawn by traversing the tree
•Suitable for static scenes

BSP (Binary Space Partitioning) Tree.

1. Choose polygon arbitrarily
2. Divide scene into front

(relative to normal) and back
half-spaces.

3. Split any polygon lying on
both sides.

4. Choose a polygon from each
side – split scene again.

5. Recursively divide each side
until each node contains only 1
polygon.

3
41

2

5

View of scene from
above

19/10/2007Lecture 9 *

BSP Tree.

3

3
41

2

5

5a
5b

1
2

5a

4
5b

backfront

1. Choose polygon arbitrarily
2. Divide scene into front

(relative to normal) and back
half-spaces.

3. Split any polygon lying on
both sides.

4. Choose a polygon from each
side – split scene again.

5. Recursively divide each side
until each node contains only 1
polygon.

BSP Tree.

3

3
41

2

5

5a
5b

4
5b

backfront

2

15a

front

1. Choose polygon arbitrarily
2. Divide scene into front

(relative to normal) and back
half-spaces.

3. Split any polygon lying on
both sides.

4. Choose a polygon from each
side – split scene again.

5. Recursively divide each side
until each node contains only 1
polygon.

BSP Tree.

3

3
41

2

5

5a
5b

backfront
2

15a

front

5b

4

1. Choose polygon arbitrarily
2. Divide scene into front

(relative to normal) and back
half-spaces.

3. Split any polygon lying on
both sides.

4. Choose a polygon from each
side – split scene again.

5. Recursively divide each side
until each node contains only
1 polygon.

19/10/2007Lecture 9

Displaying a BSP tree.
● BSP tree can be traversed to yield a correct priority list

for an arbitrary viewpoint.
•Back-to-front : same as painter’s algorithm
•Front-to-back : a more efficient approach

19/10/2007Lecture 9

Displaying a BSP tree :
Back to Front .

● Start at root polygon.
○ If viewer is in front half-space, draw polygons behind root first,

then the root polygon, then polygons in front.
○ If viewer is in back half-space, draw polygons in front of root

first, then the root polygon, then polygons behind.
○ If polygon is on edge – either can be used.
○ Recursively descend the tree.

● If eye is in rear half-space for a polygon can back face
cull.

● Always drawing the opposite side of the viewer first

In what order will the faces be drawn?

3
41

2

5
5a

5b

3 backfront
2

15a

front

5b

4

19/10/2007Lecture 9 *

Displaying a BSP tree :
Front to Back

● The back-to-front rendering will result in a lot of
over drawing again

● Front-to-back traversal is more efficient (Chen and
Gordon, 1991)
○ Record which region has been filled in already
○ Terminate when all regions of the screen is filled

in

19/10/2007Lecture 9 *

Displaying a BSP tree :
Front to Back (2)

•To hold data on filled in pixels, use Active Edge
Table

•Recording the pixels not filled in yet for each scan
line

BSP Tree: Discussions
● A lot of computation required at

start.
○ Need to produce a well balanced tree
○ Intersecting polygon splitting may

also be costly
● Cheap to check visibility once tree

is set up
● Efficient when objects don’t

change very often in the scene.

3

3
41

2

5

back

2
1

front

5
4 back

back

Alternate
formulatio
n starting

at 5

19/10/2007

BSP Tree: Discussions (2)
● Good to combine with Z-buffer
● Render the static objects first (front-to-back)

with the Z-buffer on,
● And then the dynamic objects (doors,

characters)

19/10/2007Lecture 9 *

Ex. Architectural scenes
Here there can be an enormous amount of occlusion

19/10/2007*

Portal Culling

Model scene as a graph:
• Nodes: Cells (or rooms)
• Edges: Portals (or doors)

Graph gives us:
• Potentially visible set

1.Render the room
2.If portal to the next room is visible, render

the connected room in the portal region
3.Repeat the process along the scene graph

A

BC

D

E

F

G

A

B

DC E

*

Object space and Image space
classification:

● Object space techniques: applied before vertices are mapped to
pixels
○ Painter’s algorithm, BSP trees, portal culling

● Image space techniques: applied while the vertices are rasterized
○ Z-buffering

*

Back Face Culling.
•We do not draw

polygons facing the other
direction

•Test z component of
surface normals. If
negative – cull, since
normal points away from
viewer.

•Or if N.V > 0 we are
viewing the back face so
polygon is obscured.

Summary for Hidden Surface
Removal

● Z-buffer is easy to implement on hardware and is a
standard technique for hidden surface removal

● We need to combine it with an object-based method
especially when there are too many polygons BSP trees,
portal culling

● Need to do the front-to-back traversal to reduce the cost

*

Overview
Hidden Surface Removal

●Painter’s algorithm
●Z-buffer
●BSP tree
●Portal culling
●Back face culling

●Transparency
●Alpha blending
●Screen door transparency

*

Transparency
Sometimes we want to render transparent objects
We blend the colour of the objects along the same ray
•Alpha blending
•Screen door transparency

*

Alpha Blending
Another variable called alpha is defined here
This describes the opacity
Alpha = 1.0 means fully opaque
Alpha = 0.0 means fully transparent

 α = 1 α = 0.5 α = 0.2

*

Sorting by the depth

First, you need to save the depth and colour of all
the fragments that will be projected onto the same
pixel in a list
Then blend the colour from back towards the front

The colours of overlapping fragments are blended as
follows:
Co = α Cs + (1-α) Cd
Cs : colour of the transparent object,
Cd is the pixel colour before blending,
Co is the new colour as a result of blending
Co becomes Cd for the next round

Colour Blending

Sorting is expensive

● Need to use BSP Tree
○ Soring per-pixel is very expensive

● Any faster solution ?
–Screen-door transparency

Screen-door Transparency
● The object is solid but holes in it

○ like a screen door
● Using a stipple pattern (like a checkboard

pattern)

● The ratio of blocked pixels equal to alpha
● No need of sorting : objects can be drawn

in any order
● Z-buffer can handle the overlaps of

translucent surfaces

alpha = 0.25

Screen-door Transparency:
Issues

•Transparent object over another
transparent object can block everything
behind

–When fixed patterns are used

Screen-door Transparency:
Issues 2

•Stipple patterns must be set in the screen
space – otherwise suffer from aliasing

–Why?
–See this

http://www.youtube.com/watch?v=gMsmJfiApCs

http://www.youtube.com/watch?v=gMsmJfiApCs

Stochastic Transparency
•Multi-sampling : subpixels are produced

and the pixel colour is computed by
averaging their colour

•Random sub-pixel stipple pattern

http://www.youtube.com/watch?v=4oLeQTLf50Y
http://www.youtube.com/watch?v=mMjN2_klv8k

Stochastic Transparency

•No sorting needed
•The final color of the pixel is computed by

averaging those of the subpixels

*

References for hidden surface removal
•Foley et al. Chapter 15, all of it.
•Introductory text, Chapter 13, all of it
•Or equivalents in other texts, look out for:
–(as well as the topics covered today)
–Depth sort – Newell, Newell & Sancha
–Scan-line algorithms

•S. Chen and D. Gordon. “Front-to-Back Display of
BSP Trees.” IEEE Computer Graphics & Algorithms,
pp 79–85. September 1991.

http://research.nvidia.com/publication/stochastic-
transparency

