Computer Graphics

Lecture 13
Hidden Surface Removal / Transparency

Taku Komura

Overview

Hidden Surface Removal
.Painter’s algorithm
Z-buffer
.BSP tree
.Portal culling
.Back face culling

.Transparency
Alpha blending
.Screen door transparency

Why Hidden Surface Removal?

e A correct rendering requires correct visibility
calculations
e When multiple opaque polygons cover the same screen

space, only the closest one 1s visible (remove the other
hidden surfaces) Painter’s algorithm, Z-buffer

Overview

Hidden Surface Removal
.Painter’s algorithm
Z-buffer
.BSP tree
.Portal culling
.Back face culling

.Transparency
Alpha blending
.Screen door transparency

Painters algorithm

e Draw surfaces in back to front order — nearer
polygons “paint” over farther ones.
e Neced to decide the order to draw — far objects first

A,

Painters algorithm

Key 1ssue 1s order
determination.
Doesn’t always work
— see 1mage at right.

Painters algorithm

e Another situation it
does not work

e In both cases, we
need to segment the
triangles and make
them sortable

/-bufter

An 1mage-based method applied during the
rasterization stage

A standard approach implemented in most
graphics libraries

Easy to be implemented on hardware
By Wolfgang Stral3er in 1974

/-bufter

Basic Z-buffer 1dea:

For every input polygon

e For every pixel in the polygon interior, calculate its
corresponding z value (by interpolation)

e Compare the depth value with the closest value from
a different polygon (largest z) so far

e Paint the pixel with the color of the polygon 1f it 1s
closer

Z buffer example

=-0.8
I
B =05
l | Z2=-0.3
A
Correct Final image 3 Z

Top View

Z buffer example

Step 1: Initialize the depth buffer

ri 104 1l k1100 (1§ ECH) 5120
SLRONEsROUFHO)FLD
10| -1.0;-1.0|-10
-1.0 | -1.0|-1.0 (-1.0

Z buffer example

Step 2: Draw the blue polygon (assuming the
program draws blue polyon first — the order does
hot affect the final result any way).

l | Z2=-0.3

eye

Z buffer example

Step 3: Draw the yellow polygon

=-0.8
S
I 2 --05
sHOAN=NOl100ELD i | 2=0.3

-1.0

-0.3

-0.3

140

H-O.S -1.0 |
-1.0 [-1.0
eye

If the depth value is larger than that in the z-buffer, the
pixel is coloured and value in the z-buffer is updated

Z buffer example

Step 4: Draw the red polygon

-1.0 -l.Oii |] 2=0.3
-1.0 [-0.3 |-0.3 - T

—_—

-031(-03 |-1.0 ‘
-1.0 [-1.0

eye

If the depth value is larger than that in the z-buffer, the
pixel is coloured and value in the z-buffer is updated

Why 1s Z-butfering so popular ?

Advantage
*Simple to implement in hardware.

—Memory for z-buffer 1s now not expensive
*Diversity of primitives — not just polygons.
*Unlimited scene complexity
*No need to sort the objects
*No need to calculate object-object intersections.
Disadvantage
*Waste time drawing hidden objects
/-precision errors (aliasing problems)

Z-buffer aliasing

Z-buffer performance

*Memory overhead: O(1)

*Time to resolve visibility to screen precision: O(n)
—n: number of polygons
—Need to be combined with other culling methods to
reduce complexity

Rendering Complex Scenes

e We don’t want to waste computational
resources rendering primitives which
don’t contribute to the final image
o Drawing polygonal faces on screen

consumes CPU cycles
o e.g. Illumination

Rendering Complex Scenes (2)

*We better sort the polygons according to the depth
ecoming back to the painter’s algorithm
*And only draw those close to the viewer

— BSP Tree, Portal culling

BSP Tree

*A tree structure that represents the scene
*Constructed by a detailed scene analysis
*Scene 1s then drawn by traversing the tree
*Suitable for static scenes

2. Divide scene into front

BSP (Binary Space Partitioning) Tree.

. Choose polygon arbitrarily \54

(relative to normal) and back 2

half-spaces.

. Split any polygon lying on "
both sides.

. Choose a polygon from each

side — split scene again.

AV

. Recursively divide each side View of scene from

until each node contains only 1 above
polygon.

BSP Tree.

. Choose polygon arbitrarily

. Divide scene into front
(relative to normal) and back
half-spaces.

. Split any polygon lying on
both sides.

Choose a polygon from each
side — split scene again.

. Recursively divide each side
until each node contains only 1

polygon.

5a

5b

front

N —

BSP Tree.

Choose polygon arbitrarily

2. Divide scene into front

(relative to normal) and back

half-spaces.

. Split any polygon lying on
both sides.

. Choose a polygon from each

side — split scene again.

. Recursively divide each side

until each node contains only 1

polygon.

5a

front
2

efo

2. Divide scene into front

BSP Tree.

Choose polygon arbitrarily

(relative to normal) and back
half-spaces.
Split any polygon lying on

both sides.
Choose a polygon from each
side — split scene again.
. Recursively divide each side
until each node contains only
1 polygon.

Displaying a BSP tree.
e BSP tree can be traversed to yield a correct priority list
for an arbitrary viewpoint.

*Back-to-front : same as painter’s algorithm
*Front-to-back : a more efficient approach

Displaying a BSP tree :
Back to Front

Start at root polygon.
o If viewer is in front half-space, draw polygons behind root first,
then the root polygon, then polygons in front.
o If viewer 1s in back half-space, draw polygons in front of root
first, then the root polygon, then polygons behind.
o If polygon is on edge — either can be used.
o Recursively descend the tree.

If eye 1s 1n rear half-space for a polygon can back face
cull.
Always drawing the opposite side of the viewer first

In what order will the face

—

Tree~

N\

traverse tree (bsp

[\

ind

= tree—>

T~ -~
A0CcCation

(Cree—->empty | (3
(location 0 1f eye 1n front of location
traverse_ tree (tree->back, eye
display(tree->polygon list
traverse tree(tree->front, eye
(location 0 eyve behind location
traverse tree (tree->front, eye
display(tree->polygon list
traverse tree (tree->back, eye
traverse tree (tree->front, eye

CI&VEISE_CIEE[CIEE—?

Displaying a BSP tree :
Front to Back

e The back-to-front rendering will result in a lot of
over drawing again
e Front-to-back traversal 1s more efficient (Chen and
Gordon, 1991)
o Record which region has been filled in already
o Terminate when all regions of the screen 1s filled
in

Displaying a BSP tree :
Front to Back (2)

*To hold data on filled 1n pixels, use Active Edge
Table
*Recording the pixels not filled in yet for each scan

lhne 0
1

50

50 "_751

100 220

198
199

100 220

BSP Tree: Discussions
e A lot of computation required at

start.

o Need to produce a well balanced tree

o Intersecting polygon splitting may
also be costly

e Cheap to check visibility once tree \\/vg\
is set up N

e Efficient when objects don’t 17> 4
change very often 1n the scene.

@\Ck

_lg\ack Alternate

(3 :
fron formulatio
\')@aCk n starting
< ats

BSP Tree: Discussions (2)

Good to combine with Z-buffer

Render the static objects first (front-to-back)
with the Z-buffer on,

And then the dynamic objects (doors,
characters)

Ex. Architectural scenes

Portal Culling

Model scene as a graph:
* Nodes: Cells (or rooms)
« Edges: Portals (or doors)

Graph gives us:
 Potentially visible set

1.Render the room
2.If portal to the next room is visible, render e
the connected room in the portal region

3.Repeat the process along the scene graph G @ G

Object space and Image space
classification:

e Object space techniques: applied before vertices are mapped to
pixels
o Painter’s algorithm, BSP trees, portal culling

e Image space techniques: applied while the vertices are rasterized
o Z-buffering

Back Face Culling.

*We do not draw
polygons facing the other
direction

*Test z component of
surface normals. If
negative — cull, since
normal points away from
VIEWET.

*Or if N.V >0 we are :
viewing the back face so y
polygon 1s obscured.

Summary for Hidden Surface
Removal

Z-buffer is easy to implement on hardware and 1s a
standard technique for hidden surface removal

We need to combine 1t with an object-based method
especially when there are too many polygons BSP trees,
portal culling

Need to do the front-to-back traversal to reduce the cost

Overview

Hidden Surface Removal
.Painter’s algorithm
Z-buffer
.BSP tree
.Portal culling
.Back face culling

.Transparency
Alpha blending
.Screen door transparency

Transparency

Sometimes we want to render transparent objects
We blend the colour of the objects along the same ray
*Alpha blending

*Screen door transparency

Alpha Blending

Another variable called alpha 1s defined here
This describes the opacity

Alpha = 1.0 means fully opaque

Alpha = 0.0 means fully transparent

Sorting by the depth

First, you need to save the depth and colour of all
the fragments that will be projected onto the same
pixel 1n a list

Then blend the colour from back towards the front

.
|

Colour Blending
The colours of overlapping fragments are blended as

follows:

Co= aCs+(1l-a)Cd

Cs : colour of the transparent object,

Cd 1s the pixel colour before blending,

Co 1s the new colour as a result of blending
Co becomes Cd for the next round

Sorting Is expensive

e Need to use BSP Tree
o Soring per-pixel is very expensive

e Any faster solution ?
—Screen-door transparency

Screen-door Transparency

The object is solid but holes in it

o like a screen door

Using a stipple pattern (like a checkboard
pattern)

The ratio of blocked pixels equal to alpha
No need of sorting : objects can be drawn
in any order

Z-buffer can handle the overlaps of
translucent surfaces

alpha =0.5

alpha =0.25

Screen-door Transparency:

Issues

eTransparent object over another
transparent object can block everything

behind

—When fixed patterns are used

Screen-door Transparency:

Issues 2

eStipple patterns must be set in the screen
space — otherwise suffer from aliasing
—Why?
—See this

g

e e R S e FE i i Ry -
e A

http://www.youtube.com/watch?v=gMsmJfiApCs

http://www.youtube.com/watch?v=gMsmJfiApCs

Stochastic Transparency

e Multi-sampling : subpixels are produced
and the pixel colour is computed by
averaging their colour

eRandom sub-pixel stipple pattern

http://www.youtube.com/watch?v=4oLeQTLf50Y
http://www.youtube.com/watch?v=mMjN2_klv8k

Stochastic Transparency

eNo sorting needed
eThe final color of the pixel is computed by
averaging those of the subpixels

sSCreemn

pixel fragmentl fragment?2 fragment3

~
~
I~
~
™~ |
~
|
| ~ |
~
| | I~
~
| | |
| |
|

sub-pixel

Reterences for hidden surface removal

*Foley et al. Chapter 15, all of it.
Introductory text, Chapter 13, all of 1t

*Or equivalents 1n other texts, look out for:
—(as well as the topics covered today)
—Depth sort — Newell, Newell & Sancha
—Scan-line algorithms
*S. Chen and D. Gordon. “Front-to-Back Display of
BSP Trees.” IEEE Computer Graphics & Algorithms,
pp 79-85. September 1991.

http://research.nvidia.com/publication/stochastic-
transparency

