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Overview

Hidden Surface Removal
.Painter’s algorithm
Z-buffer
.BSP tree
.Portal culling
.Back face culling

.Transparency
Alpha blending
.Screen door transparency



Why Hidden Surface Removal?

e A correct rendering requires correct visibility
calculations
e When multiple opaque polygons cover the same screen

space, only the closest one 1s visible (remove the other
hidden surfaces) Painter’s algorithm, Z-buffer
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Painters algorithm

e Draw surfaces in back to front order — nearer
polygons “paint” over farther ones.
e Neced to decide the order to draw — far objects first

A,




Painters algorithm

Key 1ssue 1s order
determination.
Doesn’t always work
— see 1mage at right.




Painters algorithm

e Another situation it
does not work

e In both cases, we
need to segment the
triangles and make
them sortable




/-bufter

An 1mage-based method applied during the
rasterization stage

A standard approach implemented in most
graphics libraries

Easy to be implemented on hardware
By Wolfgang Stral3er in 1974



/-bufter

Basic Z-buffer 1dea:

For every input polygon

e For every pixel in the polygon interior, calculate its
corresponding z value (by interpolation)

e Compare the depth value with the closest value from
a different polygon (largest z) so far

e Paint the pixel with the color of the polygon 1f it 1s
closer



Z buffer example
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Z buffer example

Step 1: Initialize the depth buffer
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Z buffer example

Step 2: Draw the blue polygon (assuming the
program draws blue polyon first — the order does
hot affect the final result any way).
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Z buffer example

Step 3: Draw the yellow polygon
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If the depth value is larger than that in the z-buffer, the
pixel is coloured and value in the z-buffer is updated




Z buffer example

Step 4: Draw the red polygon
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If the depth value is larger than that in the z-buffer, the
pixel is coloured and value in the z-buffer is updated




Why 1s Z-butfering so popular ?

Advantage
*Simple to implement in hardware.

—Memory for z-buffer 1s now not expensive
*Diversity of primitives — not just polygons.
*Unlimited scene complexity
*No need to sort the objects
*No need to calculate object-object intersections.
Disadvantage
*Waste time drawing hidden objects
/-precision errors (aliasing problems)




Z-buffer aliasing




Z-buffer performance

*Memory overhead: O(1)

*Time to resolve visibility to screen precision: O(n)
—n: number of polygons
—Need to be combined with other culling methods to
reduce complexity



Rendering Complex Scenes

e We don’t want to waste computational
resources rendering primitives which
don’t contribute to the final image
o Drawing polygonal faces on screen

consumes CPU cycles
o e.g. Illumination




Rendering Complex Scenes (2)

*We better sort the polygons according to the depth
ecoming back to the painter’s algorithm
*And only draw those close to the viewer

— BSP Tree, Portal culling




BSP Tree

*A tree structure that represents the scene
*Constructed by a detailed scene analysis
*Scene 1s then drawn by traversing the tree
*Suitable for static scenes




2. Divide scene into front

BSP (Binary Space Partitioning) Tree.

. Choose polygon arbitrarily \54

(relative to normal) and back 2

half-spaces.

. Split any polygon lying on "
both sides.

. Choose a polygon from each

side — split scene again.

AV

. Recursively divide each side View of scene from

until each node contains only 1 above
polygon.



BSP Tree.

. Choose polygon arbitrarily

. Divide scene into front
(relative to normal) and back
half-spaces.

. Split any polygon lying on
both sides.

Choose a polygon from each
side — split scene again.

. Recursively divide each side
until each node contains only 1

polygon.
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BSP Tree.

Choose polygon arbitrarily

2. Divide scene into front

(relative to normal) and back

half-spaces.

. Split any polygon lying on
both sides.

. Choose a polygon from each

side — split scene again.

. Recursively divide each side

until each node contains only 1

polygon.
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2. Divide scene into front

BSP Tree.

Choose polygon arbitrarily

(relative to normal) and back
half-spaces.
Split any polygon lying on

both sides.
Choose a polygon from each
side — split scene again.
. Recursively divide each side
until each node contains only
1 polygon.




Displaying a BSP tree.
e BSP tree can be traversed to yield a correct priority list
for an arbitrary viewpoint.

*Back-to-front : same as painter’s algorithm
*Front-to-back : a more efficient approach



Displaying a BSP tree :
Back to Front

Start at root polygon.
o If viewer is in front half-space, draw polygons behind root first,
then the root polygon, then polygons in front.
o If viewer 1s in back half-space, draw polygons in front of root
first, then the root polygon, then polygons behind.
o If polygon is on edge — either can be used.
o Recursively descend the tree.

If eye 1s 1n rear half-space for a polygon can back face
cull.
Always drawing the opposite side of the viewer first



In what order will the face

—

Tree~

N\

traverse tree (bsp

[\

ind

= tree—>

T~ -~
A0CcCation

(Cree—->empty | (3
(location 0 1f eye 1n front of location
traverse_ tree (tree->back, eye
display(tree->polygon list
traverse tree(tree->front, eye
(location 0 eyve behind location
traverse tree (tree->front, eye
display(tree->polygon list
traverse tree (tree->back, eye
traverse tree (tree->front, eye

CI&VEISE_CIEE[CIEE—?



Displaying a BSP tree :
Front to Back

e The back-to-front rendering will result in a lot of
over drawing again
e Front-to-back traversal 1s more efficient (Chen and
Gordon, 1991)
o Record which region has been filled in already
o Terminate when all regions of the screen 1s filled
in



Displaying a BSP tree :
Front to Back (2)

*To hold data on filled 1n pixels, use Active Edge
Table
*Recording the pixels not filled in yet for each scan
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BSP Tree: Discussions
e A lot of computation required at

start.

o Need to produce a well balanced tree

o Intersecting polygon splitting may
also be costly

e Cheap to check visibility once tree \\/vg\
is set up N

e Efficient when objects don’t 17> 4
change very often 1n the scene.
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BSP Tree: Discussions (2)

Good to combine with Z-buffer

Render the static objects first (front-to-back)
with the Z-buffer on,

And then the dynamic objects (doors,
characters)



Ex. Architectural scenes




Portal Culling

Model scene as a graph:
* Nodes: Cells (or rooms)
« Edges: Portals (or doors)

Graph gives us:
 Potentially visible set

1.Render the room
2.If portal to the next room is visible, render e
the connected room in the portal region

3.Repeat the process along the scene graph G @ G



Object space and Image space
classification:

e Object space techniques: applied before vertices are mapped to
pixels
o Painter’s algorithm, BSP trees, portal culling

e Image space techniques: applied while the vertices are rasterized
o Z-buffering



Back Face Culling.

*We do not draw
polygons facing the other
direction

*Test z component of
surface normals. If
negative — cull, since
normal points away from
VIEWET.

*Or if N.V >0 we are :
viewing the back face so y
polygon 1s obscured.




Summary for Hidden Surface
Removal

Z-buffer is easy to implement on hardware and 1s a
standard technique for hidden surface removal

We need to combine 1t with an object-based method
especially when there are too many polygons BSP trees,
portal culling

Need to do the front-to-back traversal to reduce the cost
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Transparency

Sometimes we want to render transparent objects
We blend the colour of the objects along the same ray
*Alpha blending

*Screen door transparency




Alpha Blending

Another variable called alpha 1s defined here
This describes the opacity

Alpha = 1.0 means fully opaque

Alpha = 0.0 means fully transparent




Sorting by the depth

First, you need to save the depth and colour of all
the fragments that will be projected onto the same
pixel 1n a list

Then blend the colour from back towards the front

.
|




Colour Blending
The colours of overlapping fragments are blended as

follows:

Co= aCs+(1l-a)Cd

Cs : colour of the transparent object,

Cd 1s the pixel colour before blending,

Co 1s the new colour as a result of blending
Co becomes Cd for the next round




Sorting Is expensive

e Need to use BSP Tree
o Soring per-pixel is very expensive

e Any faster solution ?
—Screen-door transparency




Screen-door Transparency

The object is solid but holes in it

o like a screen door

Using a stipple pattern (like a checkboard
pattern)

The ratio of blocked pixels equal to alpha
No need of sorting : objects can be drawn
in any order

Z-buffer can handle the overlaps of
translucent surfaces




alpha =0.5




alpha =0.25




Screen-door Transparency:

Issues

eTransparent object over another
transparent object can block everything

behind

—When fixed patterns are used




Screen-door Transparency:

Issues 2

eStipple patterns must be set in the screen
space — otherwise suffer from aliasing
—Why?
—See this
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http://www.youtube.com/watch?v=gMsmJfiApCs


http://www.youtube.com/watch?v=gMsmJfiApCs

Stochastic Transparency

e Multi-sampling : subpixels are produced
and the pixel colour is computed by
averaging their colour

eRandom sub-pixel stipple pattern



http://www.youtube.com/watch?v=4oLeQTLf50Y
http://www.youtube.com/watch?v=mMjN2_klv8k

Stochastic Transparency

eNo sorting needed
eThe final color of the pixel is computed by
averaging those of the subpixels
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Reterences for hidden surface removal

*Foley et al. Chapter 15, all of it.
Introductory text, Chapter 13, all of 1t

*Or equivalents 1n other texts, look out for:
—(as well as the topics covered today)
—Depth sort — Newell, Newell & Sancha
—Scan-line algorithms
*S. Chen and D. Gordon. “Front-to-Back Display of
BSP Trees.” IEEE Computer Graphics & Algorithms,
pp 79-85. September 1991.

http://research.nvidia.com/publication/stochastic-
transparency



