Computer Graphics - Assignment 1

1 Overview

For this assignment, you will have the opportunity to familiarize yourself
with basic OpenGL concepts and real-time graphics programming. You will
implement basic camera and lighting functionality, and render a 3D mesh.

2 Objective

This assignment is designed to give you an opportunity to implement some
of the theoretical ideas that are discussed in the lectures and a chance to
program graphics applications. Your task is to use the OpenGL shading
language (GLSL) to render a simple 3D mesh of a teapot object.

Input: We provide you with a 3D model of the Utah Teapot, a Shader
class for loading your shader programs, and an example shader with a sim-
ple program for loading and rendering the scene using OpenGL. Please see
the sections below for more details on each item.

Output: The 3D model does not contain information on the vertex normals.
You must compute the normals and use these to render the 3D mesh with
three separate shaders that implement the lighting techniques discussed in
the lectures. These are flat shading, Gouraud shading, and Phong shading.
You must also write a readme file explaining the techniques you have used
in the assignment and provide screenshots of your work.

Requirements:

e (Calculate the normals for the provided teapot mesh.

e Write three shader programs that implement flat shading, Gouraud
shading, and Phong shading.

e Submit a few screen shots of your program’s renderings.



e Use good code style and document well. We will read your code.

e Create a file named ”readme.txt” containing the details of your imple-
mentation and instructions for compiling and running your code.

e The program must compile and run on DICE. If it does not, you run
the risk of getting 0 marks.

Should you manage to achieve all of these requirements then you will
receive a good mark. The following is a list of possible additional techniques
that can be implemented for further marks:

e Control of the camera/teapot model using keyboard/mouse input.
This can be achieved by manipulating the view and model matrices
respectively.

e Alternative shading e.g. Toon shading

e Bump,light,displacement maps.

e Texture mapping. UVs are provided in the teapot.obj file.
e Anti-aliasing.

e Shadows.

e Environment Mapping.

e Reflection and Refraction.

A number of these techniques are taught at the sites listed in the ”Notes
on GLSL” section. If they are not there then a quick internet search for
"technique name” + ”GLSL” will normally find a decent tutorial for you.

3 DICE Instructions for use

This demonstration program is written in C++. It needs to be compiled
into executable code before running.

To compile the demo program, open up a terminal window and navigate
to the directory containing the source code. Here you can run the command:

make run



This will compile the default source code and run the demo program
with the teapot mesh as input. You can perform these actions separately
by first compiling with:

g++ -o demol demol.cpp Shader.cpp -1lglut -1GLU -1GL -1GLEW

This compiles the code and links libraries glut, GLU, GLEW and openGL.

You may then run the program with the following command:
./demol teapot.obj

Please note the .obj loading function (TriangeMesh: :LoadFile(char *))
does not account for .obj files containing information for normal vectors. If
you should wish to load other .obj files then you will need to adjust this
method accordingly.

4 Notes on the OpenGL Shading Language (GLSL)

The DICE environment should run OpenGL 2.1 and therefore will be work-
ing with at least GLSL version 1.2 according to the OpenGL documentation.
It appears that shaders written for GLSL version 1.3 can also be compiled
and run on DICE and will offer some functionality that will be useful for com-
pletion of the coursework. The version number for the shader code is speci-
fied in the vertex and fragment shader files by the command #version 130
(change to #version 120 to work with GLSL 1.2). This is not the most
up-to-date version of GLSL but the syntax for GLSL1.3 is more similar to
the current version than GLSL1.2. Please DO NOT write shaders for any
version higher than this as it will likely not run on the marker’s computer.
If the shaders do not compile or run we cannot see your work and you run
the risk of receiving a zero mark. The full reference for GLSL can be found
here: http://www.opengl.org/sdk/docs/manglsl/. Be sure to check that
the function or variable is available in the GLSL version you are working
with. Debug output from the code should help you with this. There are
several resources online that teach basic GLSL concepts. These include:

e http://www.swiftless.com/glsltuts.html - Covers a lot of the ba-
sics for using GLSL shaders, relies a lot on using the GLSL built-in
variables

e http://en.wikibooks.org/wiki/OpenGL_Programming and http://
www.lighthouse3d.com/opengl/glsl/| - These sites are better for


http://www.opengl.org/sdk/docs/manglsl/
http://www.swiftless.com/glsltuts.html
http://en.wikibooks.org/wiki/OpenGL_Programming
http://www.lighthouse3d.com/opengl/glsl/
http://www.lighthouse3d.com/opengl/glsl/

showing how to provide your own structures and values to the shader.
They do use a slightly older version of GLSL however the concepts
still hold. Be particularly careful of their description of ”varying” and
7attribute” variables. This syntax is used in GLSL 1.2 but not in
GLSL 1.3 where it has been replaced with ”out” and ”in” variables
respectively.

e http://www.opengl-tutorial.org/ - Along with the other sites, this
set of tutorials covers some more advanced techniques with shaders.

5 Notes on the source code

Below is a short description of the source code files provided to you for
this assignment. The files themselves contain a number of comments on
functionality of the program and should be largely self-explanatory. Should
you have any issues then please contact the course teaching assistant (see
contacts below).

e demol.h - Used to include necessary utility code and defines the TriangleMesh
class. Feel free to change this to your needs.

e demol.cpp - Defines the entry point for the program. Sets up the
OpenGL window and callback methods for displaying the rendered
image and handling mouse input. Loads the provided .obj file and
renders it using a basic shader. Along with the shader files this will
be where you implement the majority of your work.

e Shader.h - Defines the Shader class interface. You should not need to
change this file.

e Shader.cpp - An implementation of the Shader class interface for load-
ing and running OpenGL (GLSL) shaders. This file should not be
changed.

e shaders/exampleShader.vert - Defines the behaviour of the OpenGL
vertex shader. This file is loaded by the Shader class. You should do
most of your work here.

e shaders/exampleShader.frag - Defines the behaviour of the OpenGL
fragment shader. This file is loaded by the Shader class. You should
do most of your work here.


http://www.opengl-tutorial.org/

The source code includes headers from the OpenGL Mathematics library
(http://glm.g-truc.net/0.9.4/index.html). These headers define basic
vector and matrix classes that correspond to the classes used in OpenGL.
Of particular interest will be the glm: :vec3, glm::vec4, and glm: :mat4
classes as well as the methods for producing specific matrices relevant to
computer graphics: glm: :ortho, glm: :perspective, and glm: : lookAt.

The vertices of the mesh are rearranged according to the triangle order
(demol.cpp:lines 99-105). This is done so that the call to glDrawArrays
can be made. When calculating the normals for your mesh please be sure
to assign each normal to its corresponding vertex. Alternatively, you can
remove the code that rearranges the vertices and use glDrawElements. This
will require creating an array of indexes for the triangle primitives. Use the
Triangle class to help you with this.

The source code uses Vertex Buffer Objects (VBOs) to store the mesh
information for the shader program. The code could be made much cleaner
if you were to use Vertex Array Objects (essentially collections of VBOs).
While this is not necessary, it may help make the process clearer.

6 Hints

e Read and understand demol.h and demol.cpp first. If you don’t un-
derstand, contact the course’s teaching assistant (see below for details)
or ask a fellow student.

e If you have never experienced GLSL before, take some time to go over
it. Read through some of the basic tutorials at the websites listed in
the "Notes on GLSL” section. If you are having trouble then don’t be
afraid to ask!

e Read and understand how the source code interacts with the shader
programs. Find out how variables are passed to the program. In par-
ticular, look at the use of Vertex Buffer Objects for providing positions,
normals and color info to the shader.

e Understand the difference between ”uniform” variables,”in” variables
and ”out” variables in shaders. These are useful for knowing how you
can get the right information to the shaders as well as how information
is passed from the vertex shader to the fragment shader.

e Be careful when writing your shader code. A lot of the interaction
with the shader program relies on case-sensitive matching of variable


http://glm.g-truc.net/0.9.4/index.html

names. If something is misspelt it can prevent your shader program
from compiling and you will render nothing to the screen. The Shader
class outputs debug info to the terminal so make sure to check every-
thing is compiling correctly.

e Make sure you understand how the lighting equations work. The ac-
tual implementation of the three shaders will be very similar but they
all rely on knowing these equations.

e Document your work well. Be sure to include details in your readme
about the approach you took towards the coursework. A perfect so-
lution with no documentation will not receive as high a mark. If you
cannot get your shaders to work try to explain why you think this
might be happening.

7 Notes on .obj files

The obj file is ascii encoded, and so can be viewed by a text editor. Lines
starting with v are vertices. Lines starting with vn are vertex normals.
Lines starting with f are faces. In the supplied file (teapot.obj), all faces are
triangles.

This is a subset of the specification. The full specification for obj files
is not commonly followed in parsers or exporters. The simple importer
supplied does not deal with many aspects of the full specification includ-
ing vertex normals. Further information can be found here: http://www.
martinreddy.net/gfx/3d/0BJ.spec and here:http://en.wikipedia.org/
wiki/Wavefront_.obj_file

8 Contacts

Should you have any questions regarding the practical please feel free to
contact the course teaching assistant at: j.henry@ed.ac.uk


http://www.martinreddy.net/gfx/3d/OBJ.spec
http://www.martinreddy.net/gfx/3d/OBJ.spec
 http://en.wikipedia.org/wiki/Wavefront_.obj_file
 http://en.wikipedia.org/wiki/Wavefront_.obj_file

	Overview
	Objective
	DICE Instructions for use
	Notes on the OpenGL Shading Language (GLSL)
	Notes on the source code
	Hints
	Notes on .obj files
	Contacts

