
Computer Graphics Coursework 2

Deadline: 4pm 20/11/2015

Outline

For this project, you will be implementing a simple raytracer that can handle
shadows and reflections in a basic scene containing primitive shapes. All rendering
can be done with software, only using OpenGL to display the final image to the
screen. Though a ray tracer can be written in a few hundred lines of code it is
quite intensive and debugging can take a fairly long time so you are advised to
start early. Do not wait until the last week to start.

Specification

This assignment is designed to give you an opportunity to implement techniques
for rendering photorealistic images. Your task is to create a ray tracer capable
of rendering a set of primitive shapes.

Input: We provide you with the basic setup code for the raytracer, outlines of
Object and Ray classes that will be used for determining the final color for
each pixel in the image, and OpenGL code for rendering the final image.
Please see the sections below for more details on each item.

Output: You must write a ray tracer to render a scene composed of various
primitive shapes including at least one sphere, one plane, and one trian-
gle. This will require adding code to handle intersections between these
primitives and the rays you cast in your scene. You can render them with
the lighting equations you used in the last assignment. Your raytracer
must include simple shadows and reflections. You will also need to write a
readme file explaining the techniques you have used in the assignment and
provide screenshots of your work.

1



Requirements

Write intersection tests for spheres, planes, and triangles and include at least
one of each these objects in the scene.

• Implement the basic ray tracing algorithm in the CastRay function by
sending a ray from the camera through all objects in the scene.

• Add direct illumination and shadows by sending rays to point lights.
• Add reflections by bouncing reflection rays into the scene.
• Submit a few screen shots of your program’s renderings.
• Use good code style and document well. We will read your code.
• Create a file named readme.txt containing the details of your implementa-

tion and instructions for compiling and running your code.
• The program must compile and run on DICE. If it does not, you run the

risk of getting 0 marks.

Should you manage to achieve all of these requirements then you will receive a
good mark. The following is a list of possible additional techniques that can be
implemented for further marks. Depending on their difficultly implementing one
or two of these should significantly increase your mark.

• Add refractions using transmission rays.
• Add intersection tests for other shape primitives e.g. Axis-Aligned Bounding

Boxes.
• Acceleration structures such as octrees or BSP-trees.
• Soft shadows, reflections, or lighting.

A number of these techniques are taught at the sites listed in the Resources
section.

Compiling and running

This demonstration program is written in C++. It needs to be compiled into
executable code before running. To compile the demo program, open up a
terminal window and navigate to the directory containing the source code. Here
you can run the command:

make

Which will compile the source code. You may then run the program with the
following command:

./RayTracer

2



Figure 1: Before starting your application should look like this.

Figure 2: After finishing your application should look something like this.

3

Figure 1: Starting point

Figure 1: Before starting your application should look like this.

Figure 2: After finishing your application should look something like this.

3

Figure 2: Example of finished version

3



Resources

There are several resources online that teach basic raytracing concepts and
provide example source code. These include:

• http://www.scratchapixel.com/lessons/3d-basic-lessons/ - Covers a lot of
the theory behind raytracing and provides examples of basic raytracers.

• http://www.ics.uci.edu/~gopi/CS211B/RayTracing%20tutorial.pdf - Fo-
cuses more on the actual code used in a basic raytracer.

• http://www.cs.utah.edu/~shirley/books/fcg2/rt.pdf - Textbook chapter
explaining the concepts of raytracing as well as the derivations of some
intersection test equations.

• http://www.youtube.com/watch?v=W2QrXv2yZhE and http://www.
youtube.com/watch?v=s5m391a5HFg - Video tutorials for ray-sphere and
ray-plane intersection tests.

Notes

Below is a short description of the source code files provided to you for this
assignment.

RayTracer.h Used to include headers and utility code. Feel free to change this
to your needs.

RayTracer.cpp Defines the entry point for the program. Sets up the OpenGL
window and callback methods for displaying the rendered image. Calculates
the position of each pixel of the image in world space ready for ray casting.
Defines the CastRay function where you will implement your recursive
raytracing algorithm. Along with the Ray.* and Object.* files this will be
where you implement the majority of your work.

Ray.h Defines the Ray class interface. The Payload class holds the information
about the current state of the ray. Also provided is the IntersectInfo class
that can be used to store details on the intersection between a ray and an
object in the scene.

Object.h The Object class interface for objects in your scene.
Object.cpp Implementation of the Object and Material classes. The Intersect

method for each primitive shape needs to be overwritten here.

Hints

Read and understand RayTracer.h and RayTracer.cpp first.

4

http://www.scratchapixel.com/lessons/3d-basic-lessons/
http://www.ics.uci.edu/~gopi/CS211B/RayTracing%20tutorial.pdf
http://www.cs.utah.edu/~shirley/books/fcg2/rt.pdf
http://www.youtube.com/watch?v=W2QrXv2yZhE
http://www.youtube.com/watch?v=s5m391a5HFg
http://www.youtube.com/watch?v=s5m391a5HFg


• Familiarise yourself with how raytracing works. Read through some of the
basic tutorials at the websites listed in the Resources section. If you are
having trouble then don’t be afraid to ask!

• Start small. Begin with a single object in your scene and make sure your
intersection tests are working. You don’t have to render the shape with
full lighting straight away. A simple change of pixel color based on the
success of your intersection test should help you to check if you are doing
it right. The camera is located at (-10,10,10) and pointed at (0,0,0) so
make sure you place objects in view.

• Use the Payload and IntersectInfo classes to help you store information
on the current state of the ray and objects it may intersect with. This
information can be useful for debugging the raytracer.

• Make sure your rays are performing correctly before trying to do any
reflection.

• You can light the scene using the Phong shading equations from the
previous assignment. The ray intersection test should give you the position
and normal on the object.

• Make sure your raytracing algorithm is in place before adding too many
objects. A single sphere and plane should be enough to let you test this. If
this is in place, you can create more complex scenes by simply extending
the object class.

• Document your work well. Be sure to include details in your readme about
the approach you took towards the coursework. A perfect solution with
no documentation will not receive as high a mark. If you cannot get your
raytracer to work try to explain why you think this might be happening.

Submission

Coursework is submitted electronically using the Informatics generic electronic
submission procedure:

submit cg 2 file1, file2, etc.

or

submit cg 2 directory

The program must be compiled and run on DICE, and you must submit your
work through the above route. Work will not be accepted otherwise. If your
submission does not run on DICE you risk being scored 0.

5



University policies

Late policy:

http://www.inf.ed.ac.uk/student-services/teaching-organisation/for-taught-students/
coursework-and-projects/late-coursework-submission

Conduct policy:

http://www.inf.ed.ac.uk/admin/ITO/DivisionalGuidelinesPlagiarism.html

6

http://www.inf.ed.ac.uk/student-services/teaching-organisation/for-taught-students/coursework-and-projects/late-coursework-submission
http://www.inf.ed.ac.uk/student-services/teaching-organisation/for-taught-students/coursework-and-projects/late-coursework-submission
http://www.inf.ed.ac.uk/admin/ITO/DivisionalGuidelinesPlagiarism.html

	Outline
	Specification
	Requirements

	Compiling and running
	Resources
	Notes
	Hints
	Submission
	University policies

