
Computer Graphics Tutorial 2

In this tutorial, we will introduce some basic 3D graphics using javascript and WebGL.
Wewill load in a simple 3Dmodel, display it using shaders, and transform it via rotations
and perspective projections.

Running the Code

• Extract the given zip file from the course webpage (http://www.inf.ed.ac.uk/
teaching/courses/cg/index2017.html#Tutorials).

• Open "tutorial_2.html" in a web browser.

• If usingGoogle Chrome, youmust open it via the command linewith google-chrome
–allow-file-access-from-files. This extra flag allow the 3D model file to
be loaded from the local filesystem.

• If using Google Chrome, helpful debugging tools can be opened by pressing F12.

• If using Firefox, debugging tools can be opened by pressing Ctrl + Shift + K,
or by installing the Firebug extension.

Questions

1: Loading the 3D Model

We start by loading in a 3D model of a cube from a simple .OBJ file. If you open the
included "cube.obj" file in any text editor, you will see that there are two main types of
lines. Those starting with "v" define the positions in 3D coordinate space of the vertices
that make up the cube:

v 1 .000000 −1.000000 −1.000000

http://www.inf.ed.ac.uk/teaching/courses/cg/index2017.html#Tutorials
http://www.inf.ed.ac.uk/teaching/courses/cg/index2017.html#Tutorials


Lines starting with "f" define how the cube’s vertices combine together in triangles to
form faces. Each numbers listed here is an indices into the list of vertices previously
specified by the "v" lines. NOTE: This indexing scheme starts at 1.

f 2 3 4

When rendering the cube, we will eventually use the gl.drawArrays function with the
gl.TRIANGLES setting. This tells the GPU to render an array of arbitrary triangles using
3 sets of 3D coordinates per triangle (9 floating point values).
Your task is to complete the missing section of the loadMeshData function so that the
vertices array contains a continuous list of 3D coordinates for every triangle in the
mesh. Each triangle has 3 vertices, which have 3 coordinates each, there should be 9
floating point values per triangle.
If you have done this correctly, you should see a message saying 36 vertices were loaded,
and the vertices array should contain 108 values.

2: Perspective Projection

Next, we will add perspective projection so that the cube we just loaded will appear
correctly on screen. Complete the perspective function so that it returns the correct
4D projection matrix given the values for top t, right r, and near plane n and far f :

n
r

0 0 0

0 n
t

0 0

0 0 −(f+n)
f−n

−2fn
f−n

0 0 −1 0


Youmaywish to use the arrayToMat4 or createMat4 helper functions for this to ensure
the matrix’s contents are of the correct format.
After completing this, you should be able to see a red square in the centre of the screen.
Changing the FOV slider should make it appear closer or further away as the perspective
changes.
NOTE: WebGL’s matrices are layed out in column-major order, so the indices may not
be in the order you expect. They run in this order:




0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15


3: Translation

Now that the cube is visible, we can move it around to see the 3D perspective effect
we just implemented. We can do this by multiplying its modelMatrix by a rotation
transformation matrix.
Implement the function translate to return the correct translation matrix:

1 0 0 x

0 1 0 y

0 0 1 z

0 0 0 1


When this is completed you can move the cube around using the sliders.

4: Rotation

Implement the rotation functions rotateX, rotateY, rotateZ so that they return the
correct rotation matrices for each axis (see the lecture slides).

5: Rotation about the Origin

To rotate the cube properly, we will need to rotate it around the origin point (0, 0, 0)
rather than simply rotating it in place. To do this, we will need to apply a translation
matrix to move it to the origin, rotate it, and then apply the inverse of this translation
matrix to move it back.
Implement the applyXYZRotationTo(m, thetaX, thetaY, thetaZ) function such
that the correct rotation transformation is applied to it:



M = T−1 ·R · T ·M

where T is the translation matrix that moves the cube from its position to the origin, and
R is the rotation matrix Rx ·Ry ·Rz which applies rotations about each axis in order.
If you complete this, the 3D cube will spin whenever you alter the X, Y, or Z sliders.

Figure 1: The completed cube model spinning.


