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VR and AR



VR and AR

• VR and AR systems should

• (VR,AR) be interactive in real time through multiple sensorial

channels (vision, sound, touch, smell, taste)

• (AR) combine real and virtual objects

• (AR) register real and virtual objects

• Registration is one of the most basic problems currently

limiting augmented reality
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What do we track?

• Goal: Track pose of headset,

controller, etc.

• What is a pose?

• 3D position of the tracked object

• 3D orientation of the tracked

object

• Why? So we can map the

movement of our head to the

motion of camera in a virtual

environment - eg motion parallax.
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• Goal: Track pose of headset

• Orientation is the rotation of

device w.r.t. world or inertial

frame

• p′ = MvpMprojMcamMmp

• Mcam = RT
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Inertial Sensors



Inertial Tracking

Modern VR devices

• Oculus Rift has an accelerometer, gyroscope, magnetometer,

camera.

• HTC Vive has an accelerometer, gyroscope, Lighthouse laser

tracking system, front-facing camera.

What do Inertial Sensors measure?

• gyroscope measures angular velocity ω̃ in degrees/sec.

• accelerometer measures linear acceleration ã in m/sec2.

• magnetometer measures magnetic field strength m̃ in Gauss

(or Tesla).
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Gyroscopes

• critical for inertial

measurements in ballistic

missiles, aircrafts, drones,

the mars rover, pretty much

anything that moves!!

• measures and helps

maintaining orientation and

angular velocity

• How? conservation of

angular momentum
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MEMS Gyroscopes

• today we use microelectromechanical systems (MEMS)

• measures angular rate using the Coriolis Effect

https://www.youtube.com/watch?v=eqZgxR6eRjo
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Gyroscopes

• gyro model: ω̃ = aω + b + η

• ω is true angular velocity

• a is scalar

• b is bias, temperature dependent but approximated as a const

• η ≈ N(0, σ2
gyro) is zero-mean Gaussian noise

• 3 DOF

• calibrate:

• assume that you have a pre-calibrated one ω̃′

• minimise
∑n

i (ω̃i − ω̃′i )2 and find optimal a∗, b∗, σ∗gyro
• ωcal = a∗ω + b∗ + η∗

9



Gyroscopes

• integrate: θ̃[k] = θ(0) +
∑k

i ωcal [i ]∆t

• works well for linear motion

• drift in nonlinear motion

• accurate in short term
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Accelerometers

• MEMS

• a mass attached to a spring

• acceleration by measuring

change in capacitance

• measure linear acceleration:
ã = a(g) + a(l) + η

• a(g) is gravity vector with

magnitude 9.81 m/s2

• η ≈ N(0, σ2
acc) is

zero-mean Gaussian noise
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Accelerometers

Pros

• points up on average with magnitude of 1g

• accurate in long term, no drift, center of gravity doesn’t move

Cons

• noisy measurements

• unreliable in short run due to motion and noise

Complimentary to gyroscope

• fusing gyro and accelerometer gives 6 DOF

• tilt correction (pitch and roll)
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Magnetometers
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Magnetometers

• measure magnetic field in Gauss or micro Tesla units

• 3 DOF

• Pros

• together with gyro, accelerometer 9 DOF

• Cons

• actual direction depends on latitude and longitude

• distortions due to metal objects
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Positional Tracking



Positional Tracking

inside-out tracking: camera or sensor is located on HMD, no

need for other external devices to do tracking

• simultaneous localization and mapping (SLAM) – classic

computer & robotic vision problem (beyond this class)

outside-in tracking: external sensors, cameras, or markers are

required (i.e. tracking constrained to specific area)

• used by most VR headsets right now, but ultimate goal is

insight-out tracking
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Inside-out tracking

https://www.youtube.com/watch?v=Qe10ExwzCqk
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Outside-in tracking

• mechanical tracking

• ultra-sonic tracking

• magnetic tracking

• GPS

• WIFI

• optical
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Marker Based Tracking

• Seminal papers by Rekimoto 1998 and Kato & Billinghurst

1999

• ARToolkit and OpenCV+OpenGL

ARToolKit Pipeline Rekimoto Matrix
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Markerless Tracking

• Markers

• are cheap and robust against lighting changes

• but do not work in case of occlusion, has nothing common

with real world

• Find natural markers (invariant to scale and rotation)

• Feature extraction → descriptor → feature matching

Scale Invariant Feature Transform (SIFT) [Lowe 1999]
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Pose estimation

• how to get project 2D

coordinates?

• image formation

• estimate linear

homography

• estimate pose from

homography
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How to get project 2D coordinates

Marker detection

1. Print/Take a picture 2. Binarise 3. Find Contours

4. Warp 5. Threshold (Otsu) 6. Identify
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How to get project 2D coordinates

HTC Lighthouse

• Photosensor on the headset

• LEDs and spinning lasers

• Where and when the beam hit the

photosensor

https://www.youtube.com/watch?v=

J54dotTt7k0
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Image formation

a simple model for mapping 3D point coords to 2D
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Image formation – 3D arrangement

1. transform 3D point into view

space:

xc
i

y c
i

zci

 =

1 0 0

0 1 0

0 0 −1


︸ ︷︷ ︸
projection matrix

r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz


︸ ︷︷ ︸

rotation & translation


xi

yi

zi

1



2. perspective divide:(
xni
yni

)
=

(
xci /z

c
i

y ci /z
c
i

)

What happened to my old p′ = MvpMprojMcamMmp?
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Image formation – 2D arrangement

1. transform 3D point into view space:

xc
i

y c
i

zci

 =

1 0 0

0 1 0

0 0 −1


︸ ︷︷ ︸
projection matrix

r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz


︸ ︷︷ ︸

rotation & translation


xi

yi

0

1
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The homography matrix

1 0 0

0 1 0

0 0 −1


r11 r12 tx

r21 r22 ty

r31 r32 tz


xi

yi

1

 =

h1 h2 h3

h4 h5 h6

h7 h8 h9


︸ ︷︷ ︸

Homography

xi

yi

1



One can scale homography and get the same 3D-to-2D

mapping xni

yni

 =


xci
zci

yn
i
zci

 =


sh1xi+sh2yi+sh3
sh7xi+sh8yi+sh8

sh4xi+sh5yi+sh6
sh7xi+sh8yi+sh8
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Computing homography matrix

• estimate a scaled version of homography matrix (h9 = 1)

• we will recover scale factor s later1 0 0

0 1 0

0 0 −1


r11 r12 tx

r21 r22 ty

r31 r32 tz

 = s

h1 h2 h3

h4 h5 h6

h7 h8 1
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Computing homography matrix

xni

yni

 =


h1xi+h2yi+h3
h7xi+h8yi+1

h4xi+h5yi+h6
h7xi+h8yi+1


Multiply by denominator

xni (h7xi + h8yi + 1) = h1xi + h2yi + h3

yni (h7xi + h8yi + 1) = h4xi + h5yi + h6

Reorder

h1xi + h2yi + h3 − h7xix
n
i − h8yix

n
i = xni

h4xi + h5yi + h6 − h7xiy
n
i − h8yiy

n
i = yni
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Computing homography matrix

• For 8 unknowns, we need 4 3D-2D pairs

x1 y1 1 0 0 0 −x1xn1 −y1xn1
0 0 0 x1 y1 1 −x1xn1 −y1yn1
x2 y2 1 0 0 0 −x2xn2 −y2xn2
0 0 0 x2 y2 1 −x2xn2 −y2yn2
x3 y3 1 0 0 0 −x3xn3 −y3xn3
0 0 0 x3 y3 1 −x3xn3 −y3yn3
x4 y4 1 0 0 0 −x4xn4 −y4xn4
0 0 0 x4 y4 1 −x4xn4 −y4yn4


︸ ︷︷ ︸

A



h1

h2

h3

h4

h5

h6

h7

h8


︸ ︷︷ ︸

h

=



xn1
yn1
xn2
yn2
xn3
yn3
xn4
yn4


︸ ︷︷ ︸

b

• Solve Ah = b
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Pose estimation from homography matrix

1 0 0

0 1 0

0 0 −1


r11 r12 tx

r21 r22 ty

r31 r32 tz

 = s

h1 h2 h3

h4 h5 h6

h7 h8 1


this gives us

tx = sh3, ty = sh6, tz = −s.
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Pose estimation from homography matrix

Remember1 0 0

0 1 0

0 0 −1


r11 r12 tx

r21 r22 ty

r31 r32 tz

 = s

h1 h2 h3

h4 h5 h6

h7 h8 1


Rotation matrices are orthonormal

•
√

r211 + r221 + r231 = 1 and
√

r212 + r222 + r232 = 1

• normalize homography

s =
2√

h21 + h24 + h27 +
√
h22 + h25 + h28
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Pose estimation from homography matrix

Remember1 0 0

0 1 0

0 0 −1


r11 r12 tx

r21 r22 ty

r31 r32 tz

 = s

h1 h2 h3

h4 h5 h6

h7 h8 1


1. Normalize first col of rotation mat

r̃1 =

 h1

h4

−h7

 , r1 =
r̃1
||r̃1||2
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Pose estimation from homography matrix

Remember1 0 0

0 1 0

0 0 −1


r11 r12 tx

r21 r22 ty

r31 r32 tz

 = s

h1 h2 h3

h4 h5 h6

h7 h8 1



2. Normalize second col after orthogonalization

r̃2 =

 h2

h5

−h8

 , r2 =
r1 × r̃2
||r1 × r̃2||2
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Pose estimation from homography matrix
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Pose estimation from homography matrix

Remember1 0 0

0 1 0

0 0 −1


r11 r12 tx

r21 r22 ty

r31 r32 tz

 = s

h1 h2 h3

h4 h5 h6

h7 h8 1


3. Get third one from cross product

r3 = r1 × r2
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Pose estimation from homography matrix

Remember Euler angles (yaw-pitch-roll)

Finally angles
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Improve prediction

Predicted θx , θy , θz , tx , ty , tz

• Prediction is very sensitive to 2D coordinates

• Use more points than 4

• Apply a simple temporal filter with 0 < a < 1

(θx , θy , θz , tx , ty , tz )
(k)
f = α(θx , θy , θz , tx , ty , tz )

(k−1)
f +(1−α)(θx , θy , θz , tx , ty , tz )(k)

• Combine with inertial sensor predictions (β), typically done

with (extended) Kalman filters
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Camera Calibration

Coordinates in camera framexc
i

y c
i

zci

 =

1 0 0

0 1 0

0 0 −1


r11 r12 tx

r21 r22 ty

r31 r32 tz


xi

yi

1


Coordinates in image space (pixels)(

xp
i

yp
i

)
≈

fx s u0

0 fy v0

0 0 1


︸ ︷︷ ︸

K

1 0 0

0 1 0

0 0 −1


r11 r12 tx

r21 r22 ty

r31 r32 tz


︸ ︷︷ ︸

H

xi

yi

1



• fx , fy : focal length

• u0, v0: principal point

• s: skew
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Camera Calibration

1. print a calibration pattern

2. take pictures

3. extract corners

4. solve xp = Px where

P = KH

5. compute intrinsic K and

extrinsic parameters H
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Markerless tracking

Automatic feature extraction

• Keypoint detection (search for locations that are likely to

match)

• Descriptor (describe each region around detected keypoint)

• Descriptor Matching (efficiently search for likely matching

candidates)
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Scale invariant feature transform (SIFT)

1. Scale-space extrema detection [T. Lindeberg 1998]

• Find the points, whose surrounding

patches (with some scale) are

distinctive

40



Scale invariant feature transform (SIFT)

2. Orientation Assignment

• Assign an orientation to each keypoint to achieve invariance

to rotation

• Compute magnitude and orientation on the Gaussian
smoothed images

m(x , y) =
√

(L(x + 1, y)− L(x − 1, y))2 + (L(x , y + 1)− L(x , y − 1))2

θ(x , y) = atan(L(x + 1, y)− L(x − 1, y))/(L(x , y + 1)− L(x , y − 1))
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Scale invariant feature transform (SIFT)

3. Descriptors

• We have location, scale and orientation for each keypoint

• Rotate and scale the local region around each keypoint

• Compute a descriptor (4× 4 8 bin histograms)

42



Scale invariant feature transform (SIFT)

4. Matching – Nearest Neighbour

Template Target

Template Target

image credit: Hao Jiang.
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Scale invariant feature transform (SIFT)

4. Matching – Nearest Neighbour

Template Target

Template Target

image credit: Hao Jiang.
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Scale invariant feature transform (SIFT)

4. Matching – Ratio Test

• x1 is the first nearest neighbour to x

• x2 is the second nearest neighbour to x

• distance(x , x ′1)/distance(x , x ′2) < 0.7

Template Target
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Scale invariant feature transform (SIFT)

4. Matching – RANSAC

a. Pick three random samples

b. Find nearest neighbours
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Scale invariant feature transform (SIFT)

4. Matching – RANSAC

a. Pick three random samples b. Find nearest neighbours
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Scale invariant feature transform (SIFT)

4. Matching – RANSAC

c. Iterate k times

1. Fit a model to inliersu

v

1

 =

a b c

d e f

0 0 1


x

y

1


2. Calculate inliers and

outliers
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Stereo Vision

• epipole is the point of

intersection of the line

joining the camera centres

with the image plane

• epipolar plane is a plane

containing the baseline

• epipolar line is the

intersection of an epipolar

plane with the image plane

• x ′TFx = 0 where F is

fundamental matrix

image credit: Hartley & Zisserman.
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Stereo Vision – Rectification

a. original image pair overlaid with several epipolar lines

b. images transformed so that epipolar lines are parallel

c. images rectified so that epipolar lines are horizontal and in

vertical correspondence

d. final rectification that minimizes horizontal distortions

image credit: Loop & Zhang.
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Course material

• Read Chapter 6, Szelisky (http://szeliski.org/Book/)

• Read Chapter 6, 9, LaValle (http://vr.cs.uiuc.edu/)
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The End
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