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VR and AR



VR and AR

e VR and AR systems should

¢ (VR,AR) be interactive in real time through multiple sensorial
channels (vision, sound, touch, smell, taste)

e (AR) combine real and virtual objects

o (AR) register real and virtual objects

e Registration is one of the most basic problems currently
limiting augmented reality



What do we track?

e Goal: Track pose of headset,
controller, etc.
e What is a pose?
e 3D position of the tracked object
e 3D orientation of the tracked
object
e Why? So we can map the
movement of our head to the
motion of camera in a virtual

environment - eg motion parallax.



Goal: Track pose of headset

Orientation is the rotation of

device w.r.t. world or inertial

frame
P, = MvaprochamMmp
Meam = RT




Inertial Sensors



Inertial Tracking

Modern VR devices
e Oculus Rift has an accelerometer, gyroscope, magnetometer,
camera.

e HTC Vive has an accelerometer, gyroscope, Lighthouse laser

tracking system, front-facing camera.

What do Inertial Sensors measure?

e gyroscope measures angular velocity & in degrees/sec.
e accelerometer measures linear acceleration 3 in m/sec?.

e magnetometer measures magnetic field strength m in Gauss
(or Tesla).
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e How? conservation of
angular momentum




MEMS Gyroscopes

e today we use microelectromechanical systems (MEMS)

e measures angular rate using the Coriolis Effect

e

https://www.youtube.com/watch?v=eqZgxR6eRjo


https://www.youtube.com/watch?v=eqZgxR6eRjo

e gyro model: W =aw+ b+ 17
e w is true angular velocity
e ais scalar
e b is bias, temperature dependent but approximated as a const
RS N(O,aéym) is zero-mean Gaussian noise
e 3 DOF
e calibrate:

e assume that you have a pre-calibrated one &’
e minimise 7 (&; — &})? and find optimal a*, b*, 0},
® Wy =a‘w—+ b* +n*



o integrate: A[k] = 0(0) + 3K wea[i]At
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o integrate: A[k] = A(0) + Zf( weal[i]At
e works well for linear motion
e drift in nonlinear motion

e accurate in short term

Orlomtation
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H"“"H[LLL 1u

e MEMS L AL
e a mass attached to a spring

e acceleration by measuring
change in capacitance
e measure linear acceleration:
5= al® 4 20 4
e a8 is gravity vector with
magnitude 9.81 m/s?

~ 2 H
ORI N(Oﬂaacc) IS
zero-mean Gaussian noise
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Accelerometers

Pros

e points up on average with magnitude of 1g

e accurate in long term, no drift, center of gravity doesn't move

Cons

® noisy measurements

e unreliable in short run due to motion and noise

Complimentary to gyroscope

e fusing gyro and accelerometer gives 6 DOF

e tilt correction (pitch and roll)
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Magnetometers

MEMS Magnetometer

Hall Effect Magneto-resistive effect

Change in Resistance

www-HouToMechatronics.com 5
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Magnetometers

e measure magnetic field in Gauss or micro Tesla units

e 3 DOF
e Pros

e together with gyro, accelerometer 9 DOF
e Cons

e actual direction depends on latitude and longitude
e distortions due to metal objects

14



Positional Tracking



Positional Tracking

inside-out tracking: camera or sensor is located on HMD, no
need for other external devices to do tracking

e simultaneous localization and mapping (SLAM) — classic
computer & robotic vision problem (beyond this class)

outside-in tracking: external sensors, cameras, or markers are
required (i.e. tracking constrained to specific area)

e used by most VR headsets right now, but ultimate goal is
insight-out tracking

ii5)



Inside-out tracking

~~ 4MP Camera
—— 2x Computer Vision Processors
_— Integrated Depth Sensing

—— Motion Tracking Camera

Tracking & Realtime Geome st
of a Small Apartment (1000 sqft) adings

https://www.youtube.com/watch?v=Qel0ExwzCqk
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https://www.youtube.com/watch?v=Qe10ExwzCqk

Outside-in tracking

e mechanical tracking
e ultra-sonic tracking
e magnetic tracking
e GPS

o WIFI

e optical

i Oculus Rift
3 axis Helmholtz cail https:lwww. fixit com/Teardown/Oculus+Rift
www . directvacuum. com +CV1+Teardown/B0612
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Marker Based Tracking

e Seminal papers by Rekimoto 1998 and Kato & Billinghurst
1999

e ARToolkit and OpenCV+OpenGL

q Render 3D objects

A them with markers.
v
= in video frame

the user HMD

positions and
video stream
from camera Search for markers
_> L

orientations of
Fnd marker 30 marks
onentatm Ti={P, R}
Theimage s comested to Postions and orientatons.
binary image and
ey o 1 eriied
: .-
marke s matched eth ooy ,
templates in memory
—
= Using T; transform 30
E Vetua objects are 4 Vetolchjects o 30
rendered in vdeo frame

Positon and E E
virtual objects Rovecy 1Ds of
marks

ARToolKit Pipeline

Rekimoto Matrix
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Markerless Tracking

e Markers

e are cheap and robust against lighting changes
e but do not work in case of occlusion, has nothing common
with real world

19



Markerless Tracking

e Markers

e are cheap and robust against lighting changes
e but do not work in case of occlusion, has nothing common
with real world

e Find natural markers (invariant to scale and rotation)

e Feature extraction — descriptor — feature matching

Scale Invariant Feature Transform (SIFT) [Lowe 1999]
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Pose estimation

e how to get project 2D
coordinates?

e image formation

e estimate linear
20
hOmOgra phy projections

e estimate pose from
homography

20



How to get project 2D coordinates

Marker detection

£ B
A WD

i Y
A W2
==\ L1
1. Print/Take a picture 2. Binarise

=-0 -0

4. Warp 5. Threshold (Otsu) 6. Identify
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How to get project 2D coordinates

HTC Lighthouse

e Photosensor on the headset
e LEDs and spinning lasers

e Where and when the beam hit the
photosensor

https://www.youtube.com/watch?v=
J54dotTt7k0
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https://www.youtube.com/watch?v=J54dotTt7k0
https://www.youtube.com/watch?v=J54dotTt7k0

Image formation

a simple model for mapping 3D point coords to 2D

3D reference point arrangement planar 2D arrangement

local device

reference points
on the device

measured 2D
projections

normalized
camera frame

23



Image formation — 3D arrangement

1. transform 3D point into view

space:
c Xi
X; 1 0 O ni n2 n3 i
c| — Yi
Yi =10 1 0 1 2 N3t .
1
zf 0 0 -1 B 2 3t 1
projection matrix rotation & translation

2. perspective divide:

n © ©
X\ X /7]
n © ©
Yi ks
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Image formation — 3D arrangement

1. transform 3D point into view

space:
c Xi

X; 1 0 O ni rn2 n3  tx %
_)/,-C =10 1 0 1 2 "3 ty ZI.
zf 0 0 -1 B 2 3t 1I

projection matrix rotation & translation

2. perspective divide:

\ _ (xe/z
yin yic/zic

What happened to my old p’' = M,,Mp.0j McamMpmp?
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Image formation — 2D arrangement

1. transform 3D point into view space:

Xi
xi 1 0 O ni n2 n3 ot
Yi
c —
yil=10 1 0 1 2 N3ty 0
X
Z,-C 0O 0 -1 1 By 133 i 1 ¥,
0
projection matrix rotation & translation
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Image formation — 2D arrangement

1. transform 3D point into view space:

Xi
xi 1 0 O ni n2 n3 ot
Yi
c| _
Yi =10 1 0 1 2 N3ty 0 N
Z,-C 0O 0 -1 1 By 133 i 1 ¥,
0
projection matrix rotation & translation
X 1 0 O i n2 ik Xi
c| _
yi =10 1 0 1 2ty Vi
zf 0 0 -1 rR1 2t 1

2. perspective divide:
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The homography matrix

1 0 O ni rno ty X; hi hy h3 X;
01 0 1 r2 t |l |yil=1|hs hs he| | Vi
0 0 -1 rR1 2 ts 1 h7 hg hg 1
—_—
Homography

26



The homography matrix

0 ni n2 te\ [x hi ha h3\ [x

1 r2 t |l |yil=1|hs hs he| | Vi

—1 n1 2 t; 1 h7 hg hg 1
—_—

o O =
o = O
(@)

Homography

One can scale homography and get the same 3D-to-2D

mapping
I Li shyx;+shyy;+shs
i Z; shrxi+shgyj~+shs
n v shyxj+shsyi+she
-yl z€ Sh7X,'+5h8y,'+5h3
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Computing homography matrix

e estimate a scaled version of homography matrix (hg = 1)

e we will recover scale factor s later

1 0 O ni1 rno ty hi hy h3
0 1 0 rp1 r2 t, | =S hs hs hg
0 0 —1 nR1 Ry t; h; hg 1

27



Computing homography matrix

i hxi+hoyi+hs
i h7xj+hgy;+1
n haxi+hsyi+he

Yi hrxi+hgy;+1

Multiply by denominator
x{'(h7xi + hgy; + 1) = hix; + hoy; + h3

yi'(h7xi + hgyi + 1) = hax; + hsy; + he

28



Computing homography matrix

7 hxi+hoyi+hs
i h7xj+hgy;+1
n haxi+hsyi+he

Yi hrxi+hgy;+1

Multiply by denominator
xi'(h7xi + hgyi + 1) = hx; + hoy; + h3
yi'(h7xi + hgyi + 1) = hax; + hsy; + he
Reorder
hix; + hay; + h3 — hrxixi" — hgyix" = i’

n

haxi + hsyi + he — h7x;y" — hgyiy = yi
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Computing homography matrix

e For 8 unknowns, we need 4 3D-2D pairs

xx y1 1 0 0 0 —xix{ —yix{ hy x{
0 0 0 x1 y1 1 —xix{ —y1yf ho vy
x2 y2 1 0 0 0 —xxi —yox3 h3 x5
0 0 0 x y» 1 —xox3 —yoy, hy _ vy
x3 31 0 0 0 —x3x3 —y3x3 hs x3
0 0 0 x3 y3 1 —x3x§ —y3yf he y3
x4 ya 1 0 0 0 —xaxy —yaxg hy xg
0 0 0 xa ya 1 —xaxg —yays hg A
—— ——
A h b
e Solve Ah=0»b
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Pose estimation from homography matrix

1 0 O ni1 no tx hi hy bh3
0 1 0 1 rp t, | =S hys hs he
0 0 —1 r1 o t, h; hg 1
this gives us
tx = shs, t, =shs, t;=—s.

30



Pose estimation from homography matrix

Remember
1 0 O ni1 hno tx hi hy h3
1 0 rpy rp t, | =S hy hs hg
0 0 -1 r1 o t, h; hg 1

Rotation matrices are orthonormal

° ,/r121+r221—|—r321:1and r122+r222+r322:1

e normalize homography

2
S =
\/h§+h§+h$+\/h§+h§+h§
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Pose estimation from homography matrix

Remember
1 0 0 n1 no ity hi hy bh3
0 1 0 P Mo ty =5s| ha h5 h6
0 0 -1 Ry o t, h7 hg 1
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Pose estimation from homography matrix

Remember
1 0 O ni1 N2 tx hi hy h3
0 1 0 1 rp t,| =S hsy hs hg
0 0 —1 r1 3 t, h; hg 1
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Pose estimation from homography matrix

Remember
1 0 0 n1 h2  ty hi  hy
01 O 1 rp t,| =S hs hs
0 0 —1 r1 3 t, h7 hg

2. Normalize second col after orthogonalization

ho .
- rn xXrnr
= | hs |, rp=——7"—
l[rn x P22
_h8
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Pose estimation from homography matrix

Remember
1 0 O n1 no ity hi hy bh3
0 1 0 rp1 ro ty| =S hs hs he
0 0 -1 r1 o t, h7 hg 1

3. Get third one from cross product

3 =1r Xrn
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Pose estimation from homography matrix

Remember Euler angles (yaw-pitch-roll)

T T2 Ti3 cos(f,) —sin(d;) 0 1 0 0 cos (fy) O sin(6,)
ro1 T92 T23 | = | sin(f:) cos(f.) 0 0 cos(f;) —sin(6s) 0 1 0
T3 T32 T33 0 0 1 0 sin(6;) cos(6,) —sin(#,) 0 cos(6,)

R R.(0:) Rz (6) Ry(6y)
( cos (f,) cos () — sin (0,) sin (6,) sin (0;) —cos (6,)sin(6.) sin(f,) cos (6.) + sin (6,) cos (6,) sin (6.) )
0 0, 2)

cos (0,) sin (6.) + sin (f.) sin (6,) cos (0.) cos(0,)cos(f.) sin(f,)sin(f.) — sin (6.) cos (8,) cos (0
—cos (6, sin (6,) sin (6;) cos (6,) cos (0,)
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Pose estimation from homography matrix

Remember Euler angles (yaw-pitch-roll)

T Ti2 T3 cos(f,) —sin(d;) 0 1 0 0 cos (fy) O sin(6,)
ro1 T92 T23 | = | sin(f:) cos(f.) 0 0 cos(f;) —sin(6s) 0 1 0
T3 T32 T33 0 0 1 0 sin(6;) cos(6,) —sin(#,) 0 cos(6,)

R R.(6:) Rz (0) Ry(6y)
( cos (f,) cos () — sin (0,) sin (6,) sin (0;) —cos (6,)sin(6.) sin(f,) cos (6.) + sin (6,) cos (6,) sin (6.) )
0 0, 2)

cos (6,) sin (0-) + sin () sin (6,) cos (0.) cos (f,)cos (f.) sin(f,) sin(6.) — sin (6..) cos (6,) cos (6
—cos (6, sin (6,) sin (0;) cos (6,) cos (0,)

Finally angles

32 = sin (0) = 0, = sin~! (r33) = asin (r32)
r31 _ cos(f;)sin(6,) o )

733 - COQ( )COS (0 ) tan (By) = 0y = tan yas = atanZ( r31, 7‘33)
riz _ cos(fz)sin(0:) e )

roy cos( ) cos (6,) tan (6,) = 0, = tan rn) atan2 (—r13,722)
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Improve prediction

Predicted 0,,0,,0,,t.,t,,t,

e Prediction is very sensitive to 2D coordinates
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Improve prediction

Predicted 0,,0,,0,,t.,t,,t,

e Prediction is very sensitive to 2D coordinates

e Use more points than 4

36



Improve prediction

Predicted 0,,0,,0,,t.,t,,t,

e Prediction is very sensitive to 2D coordinates

e Use more points than 4
e Apply a simple temporal filter with 0 < a <1

k

(6x, 0y, 02, t, ty, £2)) = a(0x, 60y, 02, 1, 1y, ) 4(1=0) (0x, 6y, 0, e, 1y, 1))
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Improve prediction

Predicted 0,,0,,0,,t.,t,,t,

e Prediction is very sensitive to 2D coordinates

Use more points than 4
Apply a simple temporal filter with 0 < a < 1

(0, 0y, 0z, tu, ty, 1)) = (Ox, Oy, 0z, L, ty, ) D4 (1—a) (Ox, Oy, 0z, i, 1y, 1))

Combine with inertial sensor predictions (/3), typically done
with (extended) Kalman filters
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Camera Calibration

Coordinates in camera frame

Xic 1 0 0 rni rno2 ty X
y,»c =10 1 0 1 2ty Yi
Z,-C 0 0 -1 rn1 3 t, 1
Coordinates in image space (pixels)
5 ik s u 1 0 O ni rnp o tx
X
< ’p> ~ 0 f'y %) 0 1 0 1 M t,
Yi 0 0 1/\0o 0 -1/ \rm rm t
K H
e f., f,: focal length oA
.. . Vo ‘_)i(
e gy, Vp: principal point v, :
e s: skew u u
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Camera Calibration

Estracted comers

print a calibration pattern
take pictures

extract corners

= ® ¥ =

solve xP = Px where

P = KH

£
£
2

5. compute intrinsic K and

100 200 300 400 a00 600

extrinsic parameters H ({0 G )
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Markerless tracking

Automatic feature extraction

e Keypoint detection (search for locations that are likely to
match)

e Descriptor (describe each region around detected keypoint)

e Descriptor Matching (efficiently search for likely matching

candidates)

39




Scale invariant feature transform (SIFT)

Amount of nteresiing st

1. Scale-space extrema detection [T. Lindeberg 1998]

e Find the points, whose surrounding
patches (with some scale) are

distinctive

Radius

Difference of
Gaussian (DOG)
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Scale invariant feature transform (SIFT)

2. Orientation Assignment

e Assign an orientation to each keypoint to achieve invariance
to rotation

e Compute magnitude and orientation on the Gaussian
smoothed images

m(x,y) = \/(/-(X +1,y) - Lx—1,y))> + (Ll y + 1) — L(x,y — 1))

0(x,y) = atan(L(x +1,y) — L(x = 1,y))/(L(x,y + 1) = L(x,y — 1))
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Scale invariant feature transform (SIFT)

3. Descriptors

e We have location, scale and orientation for each keypoint
e Rotate and scale the local region around each keypoint

e Compute a descriptor (4 x 4 8 bin histograms)

hk A A e v |
NG v e ey ./
N\, 4
~————
Image gradients Keypoint descriptor
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Scale invariant feature transform (SIFT)

4. Matching — Nearest Neighbour

Template

43

image credit: Hao Jiang.



Scale invariant feature transform (SIFT)

Template

43

image credit: Hao Jiang.



Scale invariant feature transform (SIFT)

4. Matching — Ratio Test

e X is the first nearest neighbour to x
e Xxp is the second nearest neighbour to x

e distance(x, x;)/distance(x, x4) < 0.7

Template

44



Scale invariant feature transform (SIFT)

4. Matching — RANSAC

a. Pick three random samples

O
° [ ]
°
.oo ®e
o ® o0 © ©
LI )
° e o o,
e o o o
o0 ©
Template ...

Target
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Scale invariant feature transform (SIFT)

4. Matching — RANSAC

a. Pick three random samples b. Find nearest neighbours

..-.:.' :: o o ..o;l/:o ° o
.« o °° o.::. :M’ ..::.

e o
Template P Template o o .

Target Target

45



Scale invariant feature transform (SIFT)

4. Matching — RANSAC

c. lterate k times

1. Fit a model to inliers

a b c\ [x @
vli=1|d e f y
1 0 0 1 1

2. Calculate inliers and
outliers
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e epipole is the point of
intersection of the line
joining the camera centres
with the image plane

e.l’
e epipolar plane is a plane N vasetine " / IV
rd
containing the baseline AN e
v

e epipolar line is the b

intersection of an epipolar
plane with the image plane
e x'T Fx = 0 where F is

fundamental matrix

image credit: Hartley & Zisserman.
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Stereo Vision — Rectification

(c) (d)

a. original image pair overlaid with several epipolar lines

b. images transformed so that epipolar lines are parallel

c. images rectified so that epipolar lines are horizontal and in
vertical correspondence

d. final rectification that minimizes horizontal distortions

48
image credit: Loop & Zhang.



Course material

e Read Chapter 6, Szelisky (http://szeliski.org/Book/)
e Read Chapter 6, 9, LaValle (http://vr.cs.uiuc.edu/)

49


http://szeliski.org/Book/
http://vr.cs.uiuc.edu/

The End
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