Curves

Hakan Bilen University of Edinburgh

Computer Graphics Fall 2017

Some slides are courtesy of Steve Marschner and Taku Komura

How to create a virtual world?

- To compose scenes
- We need to define objects
- Characters
- Terrains
- Objects (trees, furniture, buildings etc)

Geometric representations

- Meshes
 - Triangle, quadrilateral, polygon
- Implicit surfaces
 - Blobs, metaballs
- Parametric surfaces / curves
 - Polynomials
 - Bezier curves, B-splines

Motivation

Smoothness

Many applications require smooth surfaces

Can produce smooth surfaces with less parameters

- Easier to design
- Can efficiently preserve complex structures

Original Spline

From draftsmanship to CG

- Control
 - user specified control points
 - analogy: ducks
- Smoothness
 - smooth functions
 - usually low order polynomials
 - analogy: physical constraints, optimization

What is a curve?

A set of points that the pen traces over an interval of time

Implicit form: $f(x, y) = x^2 + y^2 - 1 = 0$

• Find the points that satisfy the equation

Parametric form: $(x, y) = f(t) = (cost, sint), t \in [0, 2\pi)$

• Easier to draw

What is a spline curve?

in this context

f(t) is a

- parametric curve
- piecewise polynomial function that switches between different functions for different t intervals

Defining spline curves

- Discontinuities at the integers [t=k]
- Each spline piece is defined over [k,k+1] (e.g. a cubic spline)

 $f(t) = at^3 + bt^2 + ct + d$

- Different coefficients for every interval
- Control of spline curves
 - Interpolate
 - Approximate

Today

- Spline segments
 - Linear
 - Quadratic
 - Hermite
 - . Bezier
- Chaining splines
- Notation
 - vectors bold and lowercase v
 - points as column vector $\boldsymbol{p} = \begin{pmatrix} p_x & p_y \end{pmatrix}$
 - matrices bold and uppercase M

Spline segments

Linear Segment

A line segment connecting point p_o to p_1 Such that $f(0) = p_0$ and $f(1) = p_1$

$$f_x(t) = (1-t)\mathbf{x}_o + t\mathbf{x}_1$$
$$f_y(t) = (1-t)\mathbf{y}_o + t\mathbf{y}_1$$

Vector formulation

$$f(t) = (1-t)\boldsymbol{p_o} + t\boldsymbol{p_1}$$

Matrix formulation

$$f(t) = (t \ 1) \begin{pmatrix} ? & ? \\ ? & ? \end{pmatrix} \begin{pmatrix} p_0 \\ p_1 \end{pmatrix}$$
$$f(t) = (t \ 1) \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} p_0 \\ p_1 \end{pmatrix}$$

Matrix form of spline

$$f(t) = (t \ 1) \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \boldsymbol{p}_0 \\ \boldsymbol{p}_1 \end{pmatrix}$$

Blending functions b(t) specify how to blend the values of the control point vector

$$f(t) = b_0(t)p_0 + b_1(t)p_1$$

 $b_0(t) = 1 - t$
 $b_1(t) = t$

Beyond line segment

Quadratic

A quadratic ($f(t) = a_0 + a_1 t + a_2 t^2$) passes through p_0 , p_1 , p_2 s.t. $p_0 = f(0) = a_0 + 0$ $a_1 + 0^2$ a_2 $p_1 = f(0.5) = a_0 + 0.5 a_1 + 0.5^2 a_2$ $p_2 = f(1) = a_0 + 1$ $a_1 + 1^2$ a_2

Points can be written in terms of constraint matrix C

$$\begin{pmatrix} p_0 \\ p_1 \\ p_2 \end{pmatrix} = Ca \Rightarrow \begin{pmatrix} p_0 \\ p_1 \\ p_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0.5 & 0.25 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} \Rightarrow \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = C^{-1} \begin{pmatrix} p_0 \\ p_1 \\ p_2 \end{pmatrix}$$

f(t) can be written in terms of basis matrix $B = C^{-1}$ and points p

$$f(t) = tBp = tC^{-1}p = (t^2 \ t \ 1) \begin{pmatrix} 2 & -4 & 2 \\ -3 & 4 & -1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} p_0 \\ p_1 \\ p_2 \end{pmatrix}$$

Matrix form of spline

Blending functions

$$f(t) = (t^2 \ t \ 1) \begin{pmatrix} 2 & -4 & 2 \\ -3 & 4 & -1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} p_0 \\ p_1 \\ p_2 \end{pmatrix}$$

Blending functions b(t) specify how to blend the values of the control point vector

$$f(t) = b_0(t)p_0 + b_1(t)p_1 + b_2(t)p_2$$

$$b_0(t) = 2t^2 - 3t + 1$$

$$b_1(t) = -4t^2 - 4t$$

$$b_2(t) = 2t^2 - 1$$

Hermite spline

 p_0

 v_0

- Piecewise cubic ($f(t) = a_0 + a_1t + a_2t^2 + a_3t^3$)
- Additional constraint on tangents (derivatives)

$$f(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$$

$$f'^{(t)} = a_1 + 2a_2 t + 3a_3 t^2$$

$$p_0 = f(0) = a_0$$

$$p_1 = f(1) = a_0 + a_1 + a_2 + a_3$$

$$v_1 = f'(0) = a_1$$

$$v_2 = f'(1) = a_1 + 2a_2 + 3a_3$$

• Simpler matrix form

$$\boldsymbol{f}(t) = (t^3 \ t^2 \ t \ 1) \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} \boldsymbol{p}_0 \\ \boldsymbol{p}_1 \\ \boldsymbol{v}_1 \\ \boldsymbol{v}_2 \end{pmatrix}$$

 p_1

12

Hermite to Bézier

 q_1

 v_0

 p_0

 q_2

 $\cdot v_1$

 p_1

 q_3

11

Specify tangents as points

•
$$p_0 = q_0, p_1 = q_3, v_0 = 3(q_1 - q_0), v_1 = 3(q_3 - q_2)$$

$$\cdot \begin{pmatrix} p_0 \\ p_1 \\ v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -3 & 3 & 1 & 0 \\ 0 & 0 & -3 & 3 \end{pmatrix} \begin{pmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{pmatrix}$$

• Update Hermite eq. (from previous slide)

$$\boldsymbol{f}(t) = (t^3 \ t^2 \ t \ 1) \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -3 & 3 & 1 & 0 \\ 0 & 0 & -3 & 3 \end{pmatrix} \begin{pmatrix} \boldsymbol{q}_0 \\ \boldsymbol{q}_1 \\ \boldsymbol{q}_2 \\ \boldsymbol{q}_3 \end{pmatrix}$$

Bézier matrix

$$\boldsymbol{f}(t) = (t^3 t^2 t 1) \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 2 & 0 & -6 & 6 \end{pmatrix} \begin{pmatrix} \boldsymbol{q}_0 \\ \boldsymbol{q}_1 \\ \boldsymbol{q}_2 \\ \boldsymbol{q}_3 \end{pmatrix}$$

•
$$\boldsymbol{f}(t) = \sum_{n=0}^{d} \boldsymbol{b}_{n,3} \boldsymbol{q}_n$$

- Blending functions b(t) has a special name in this case:
- Bernstein polynomials

$$b_{n,k} = \binom{n}{k} t^k (1-t)^{n-k}$$

and that defines Bézier curves for any degree

Bézier blending functions

The functions sum to 1 at any point along the curve.

Endpoints have full weight

Another view to Bézier segments

de Casteljau algorithm

Blend each linear spline with α and $\beta = 1 - \alpha$

 p_0

β

 p_2

Review

http://www.inf.ed.ac.uk/teaching/courses/cg/d3/hermite.html

http://www.inf.ed.ac.uk/teaching/courses/cg/d3/bezier.html

http://www.inf.ed.ac.uk/teaching/courses/cg/d3/Casteljau.html