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Review: Change of coordinates



Change of Coordinates

Which is bigger 𝑥𝑝 or 𝑢𝑝?

x

y u

v

p

o

e𝑇

𝑝 in global coordinates (x,y)

𝑝 = 𝒐 + 𝑥𝑝𝒙 + 𝑦𝑝𝒚

𝑝𝑥
𝑝𝑦
1

=
1 0 0
0 1 0
0 0 1

𝑥𝑝
𝑦𝑝
1

𝑝 in local coordinates (u,v)

𝑝 = 𝒆 + 𝑢𝑝𝒖 + 𝑣𝑝𝒗

𝑝𝑥
𝑝𝑦
1

=

𝑢𝑥 𝑣𝑥 𝑒𝑥
𝑢𝑦 𝑣𝑦 𝑒𝑦
0 0 1

𝑢𝑝
𝑣𝑝
1

From local to global
𝑥𝑝
𝑦𝑝
1

=

𝑢𝑥 𝑣𝑥 𝑒𝑥
𝑢𝑦 𝑣𝑦 𝑒𝑦
0 0 1

𝑢𝑝
𝑣𝑝
1

From local to global and from global to local
𝑥𝑝
𝑦𝑝
1

= 𝑇

𝑢𝑝
𝑣𝑝
1

and

𝑢𝑝
𝑣𝑝
1

= 𝑇−1
𝑥𝑝
𝑦𝑝
1

𝑇 =
1 0 𝑒𝑥
0 1 𝑒𝑦
0 0 1



Change of Coordinates

p in different coordinate frames

𝑝𝑥
𝑝𝑦
1

=
1 0 0
0 1 0
0 0 1

𝑥𝑝
𝑦𝑝
1

=
𝑢𝑥
0 𝑣𝑥

0 𝑒𝑥
0

𝑢𝑦
0 𝑣𝑦

0 𝑒𝑦
0

0 0 1

𝑢𝑝
0

𝑣𝑝
0

1

=
𝑢𝑥
1 𝑣𝑥

1 𝑒𝑥
1

𝑢𝑦
1 𝑣𝑦

1 𝑒𝑦
1

0 0 1

𝑢𝑝
1

𝑣𝑝
1

1

𝑇 from 

𝑢𝑝
0

𝑣𝑝
0

1

to 

𝑥𝑝
𝑦𝑝
1

and 𝑅 from 

𝑢𝑝
0

𝑣𝑝
0

1

to

𝑢𝑝
1

𝑣𝑝
1

1

𝑝𝑥
𝑝𝑦
1

=

𝑥𝑝
𝑦𝑝
1

= 𝑇

𝑢𝑝
0

𝑣𝑝
0

1

= 𝑇𝑅

𝑢𝑝
1

𝑣𝑝
1

1
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Robot example (assignment)

Change of Coordinates

𝒚 = 𝑴𝟏𝑴𝟐…𝑴𝟕𝒙

𝒙 is in local coordinates

𝒚 is in world (global) coordinates



x

y Car example

Change of Coordinates

In local coordinates

1. 𝑇1: 5 meters up from (𝑢0, 𝑣0) to (𝑢1, 𝑣1)

2. 𝑅: 30 degrees rotate from (𝑢1, 𝑣1) to (𝑢2, 𝑣2)

3. 𝑇2: 5 meters up from (𝑢2, 𝑣2) to (𝑢3, 𝑣3)

Assume it is a robot arm:
𝑥𝑝
𝑦𝑝
1

= 𝑇1𝑅𝑇2

0.4
0
1

𝑢1

𝑣1

𝑝1

𝑢0

𝑣0

𝑝0

𝑢3

𝑣3

𝑝3

𝑒3

𝑒0

𝑢2

𝑣2

𝑝2



𝑴𝒑 = 𝑻𝑹𝑻−𝟏𝒑

The mysterious connection with change of coordinates

Rotate about a particular point

R𝑇−1 𝑇



How the heck is it different from local to global transformation?

(1)

𝑥𝑝
𝑦𝑝
1

= 𝑇

𝑢𝑝
𝑣𝑝
1

(2)

𝑢𝑞
𝑣𝑞
1

= 𝑅

𝑢𝑝
𝑣𝑝
1

Then the solution should be
𝑥𝑞
𝑦𝑞
1

= 𝑇𝑅

𝑢𝑝
𝑣𝑝
1

We don’t have the local coordinates 

𝑢𝑝
𝑣𝑝
1

but global ones 

𝑥𝑝
𝑦𝑝
1

and 

𝑥𝑞
𝑦𝑞
1

= 𝑇𝑅𝑇−1
𝑥𝑝
𝑦𝑝
1

The mysterious connection with change of coordinates

Rotate about a particular point
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Today

View transformation 3D→2D

• Camera transformation

• Projective transformation

• Viewport transformation



Sequence of transformations

Pipeline of transformations

Slide credits: S. Marschner

Which transformations are from continuous to continuous?



Sequence of transformations

Pipeline of transformations

Slide credits: S. Marschner



• Depends on pose of camera

• eye position (𝒆)

• gaze direction (𝐠)

• view-up vector (𝒕)

World space to camera space

Camera (Eye) Transformation

𝑧

𝒈

𝒕

𝒆



Dot product

• 𝒂 ⋅ 𝒃 = 𝒂 𝒃 𝑐𝑜𝑠𝜙

• 𝒂 ⋅ 𝒃 = 𝒙𝒂𝒙𝒃 + 𝒚𝒂𝒚𝒃

• Projection a onto b

𝒂 → 𝒃 = 𝒂 𝑐𝑜𝑠𝜙 =
𝒂⋅𝒃

| 𝒃 |

• 𝒂 ⋅ 𝒃= 𝒃 ⋅ 𝒂, 𝒂 ⋅ 𝒃 + 𝒄 = 𝒂 ⋅ 𝒃+ 𝒂 ⋅ 𝒄, 𝑘𝒂 ⋅ 𝒃 = 𝒂 ⋅ 𝑘𝒃

Cross product

• ||𝒂 × 𝒃|| = 𝒂 𝒃 𝒔𝒊𝒏𝝓

• 𝒙 × 𝒚 = 𝒛, 𝒚 × 𝒙 = −𝒛

• 𝒚 × 𝒛 = 𝒙, 𝒛 × 𝒚 = −𝒙

• 𝒙 × 𝒛 = −𝒚, 𝒛 × 𝒙 = −𝒚

• 𝒂 × 𝒃 =

𝒚𝒂𝒛𝒃 − 𝒛𝒂𝒚𝒃
𝒛𝒂𝒙𝒃 − 𝒙𝒂𝒛𝒃
𝒙𝒂𝒚𝒃 − 𝒚𝒂𝒙𝒃

Review: Linear Algebra

𝜙

𝒂

𝒃

𝜙

𝒂

𝒃

𝒂 × 𝒃



Orthonormal basis

Construct a new coordinate system in 3D

1. Give me two vectors (𝑥, 𝑦) which are not collinear

2. Normalize 𝒙 such that 𝒙 = 1, ෥𝒙 =
𝒙

𝒙

3. If ෥𝒙 ⋅ ෥𝒚 ≠ 0,𝒘 = ෥𝒙 , 𝒖 =
𝒘×෥𝒚

𝒘×෥𝒚
, otherwise, 𝒘 = ෥𝒙 , 𝒖 =

𝒚

𝒚

4. 𝐯 = 𝒘 × 𝒖



Construct camera coordinates

Given 𝒆, 𝒈, 𝒕

• 𝒘 = −
𝒈

𝒈

• 𝒖 = −
𝒕×𝒘

𝒕×𝒘

• 𝒗 = 𝒘 × 𝒖

From world to camera

𝑴𝒄𝒂𝒎 =
𝒖 𝒗 𝒘 𝒆
0 0 0 1

−𝟏
=

𝑥𝑢 𝑦𝑢 𝑧𝑢 0
𝑥𝑣 𝑦𝑣 𝑧𝑣 0
𝑥𝑤 𝑦𝑤 𝑧𝑤 0
0 0 0 1

1 0 0 −𝑥𝑒
0 1 0 −𝑦𝑒
0 0 1 −𝑧𝑒
0 0 0 1

𝑧

𝒘

𝒗

𝒆
𝒖



Pipeline of transformations

Slide credits: S. Marschner



Perspective Projection

• Objects far away appear smaller, closer objects appear bigger

• Specified by 

• center of projection 

• focal distance (distance from the eye to the projection plane) 



Perspective Projection

Der Zeichner der Laute, Dürer



Perspective Projection

similar triangles:
𝑦𝑠
𝑑
=

𝑦𝑠
−𝑧

→ 𝑦𝑠 = −
𝑑𝑦

𝑧

Slide credits: S. Marschner

𝒆
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How to encode perspective?

𝑥𝑠 = −
𝑑𝑥

𝑧
, 𝑦𝑠 = −

𝑑𝑦

𝑧

𝑥𝑠
𝑦𝑠
𝑧𝑠
1

=

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

𝑥
𝑦
𝑧
1



Revisited

Homogeneous Coordinates

• Introduced to combine linear and translation part (in Lecture 5)

𝑥
𝑦
𝑧

→

𝑥
𝑦
𝑧
1

• True purpose of homogenous coordinates is projection

• Perspective projection requires division
𝑥
𝑦
𝑧
1

~

𝑤𝑥
𝑤𝑦
𝑤𝑧
𝑤

• If 𝑤 > 0, divide by 𝑤 to convert into Cartesian coordinates

• If 𝑤 = 0, it is a point at infinity



Equivalence of homogenous coordinates

𝑥
𝑦
𝑧
1

~

𝑤𝑥
𝑤𝑦
𝑤𝑧
𝑤

Image credit: W. Matusik



Perspective Projection

Move z to w:

𝑥𝑠
𝑦𝑠
1

=
−𝑑𝑥/𝑧
−𝑑𝑦/𝑧

1

~
𝑑𝑥
𝑑𝑦
−𝑧

=
𝑑 0 0 0
0 𝑑 0 0
0 0 −1 0

𝑥
𝑦
𝑧
1

𝒆

𝑦𝑠

𝑦

𝑧
V
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w
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𝒛

𝒚

𝒆
𝒙



Parallel Projection

• Focal length (d) is infinite

𝑥𝑠 = 𝑥, 𝑦𝑠 = 𝑥

• Rays are parallel and orthogonal to image

• Toss out z

𝑥′
𝑦′
1

=
𝑥
𝑦
1

=
1 0 0 0
0 1 0 0
0 0 0 1

𝑥
𝑦
𝑧
1



Bounding view volume

In practice, we are interested to 

visualize the objects

• in front of the camera

• in a bounded volume

- not too close, far

Volume shapes

• A box for parallel projection

• a frustum (truncated pyramid) 

for perspective projection

Clip surfaces outside the view 

volume are clipped



Bounding view volume

Image credit: Hughes



Bounded View Volume

• Use near plane distances as the projection distance (𝑑 = −𝑛)

• Scale by -1 to have fewer minus sign

𝑥𝑠
𝑦𝑠
1

=
𝑛𝑥/𝑧
𝑛𝑦/𝑧
1

~
𝑛𝑥
𝑛𝑦
−𝑧

=
𝑛 0 0 0
0 𝑛 0 0
0 0 1 0

𝑥
𝑦
𝑧
1

Problem: Keep depth info for the later hidden surface elimination

𝒆
𝑦𝑠

𝑦

𝑧
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Canonical View Volume

• Preserve depth on near and far planes in 𝑧𝑠
𝑥𝑠
𝑦𝑠
𝑧𝑠
1

~

෤𝑥
෥𝑦
෤𝑧
𝑧

=

𝑛 0 0 0
0 𝑛 0 0
0 0 𝑎 𝑏
0 0 1 0

𝑥
𝑦
𝑧
1

• choose a and b so that 𝑧𝑠 𝑧 = 𝑛 = 𝑛 and 𝑧𝑠 𝑧 = 𝑓 = 𝑓.

ǁ𝑧 𝑧 = 𝑎𝑧 + 𝑏

𝑧𝑠(𝑧) =
ǁ𝑧

𝑧
=
𝑎𝑧 + 𝑏

𝑧
want 𝑧𝑠 𝑧 = 𝑛 = 𝑛 and 𝑧𝑠 𝑧 = 𝑓 = 𝑓

𝑎 = 𝑛 + 𝑓 and b = −𝑛𝑓



Perspective Matrix

𝑷

𝑥
𝑦
𝑧
1

=

𝑛 0 0 0
0 𝑛 0 0
0 0 𝑛 + 𝑓 −𝑓𝑛
0 0 1 0

𝑥
𝑦
𝑧
1

=

𝑛𝑥

𝑧
𝑛𝑦

𝑧

𝑛 + 𝑓 𝑧 − 𝑓𝑛
𝑧

=

𝑛𝑥

𝑧
𝑛𝑦

𝑧

𝑛 + 𝑓 −
𝑓𝑛

𝑧
1

Check whether 𝑷 preserves the relative order of z values (𝑓 < 𝑧 < 𝑛)



• Frustrum dimensions

• 𝑙𝑒𝑓𝑡 ≤ 𝑥 ≤ 𝑟𝑖𝑔ℎ𝑡,

• 𝑏𝑜𝑡𝑡𝑜𝑚 ≤ 𝑦 ≤ 𝑡𝑜𝑝,

• 𝑛𝑒𝑎𝑟 ≤ 𝑧 ≤ 𝑓𝑎𝑟

• 𝑀𝑝𝑒𝑟 = 𝑀𝑜𝑟𝑡ℎ𝑃

•

2

𝑟−𝑙
0 0 −

𝑟+𝑙

𝑟−𝑙

0
2

𝑡−𝑏
0 −

𝑡+𝑏

𝑡−𝑏

0 0
2

𝑛−𝑓
−

𝑛+𝑓

𝑛−𝑓

0 0 0 1

𝑛 0 0 0
0 𝑛 0 0
0 0 𝑛 + 𝑓 −𝑓𝑛
0 0 1 0

Transforming the View Frustum

Canonical view volume



Sequence of transformations

Pipeline of transformations

Slide credits: S. Marschner



Canonical space to screen space

Viewport Transform

𝑥𝑠𝑐𝑟𝑒𝑒𝑛
𝑦𝑠𝑐𝑟𝑒𝑒𝑛

1
=

𝑛𝑥

2
0

𝑛𝑥−1

2

0
𝑛𝑦

2

𝑛𝑦−1

2

0 0 1

𝑥𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙
𝑦𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙

1

1

-1
-1 1

𝑛𝑦 − 0.5

−0.5
−0.5 𝑛𝑥 − 0.5

𝑀𝑣𝑝



Canonical space to screen space

Pipeline of transformations

1. Transform into world coords (modeling transform) 

2. Transform into camera coords (camera transform) 

3. Perspective matrix, 

4. Orthographic projection, 

5. View Transform

𝒑𝒔𝒄𝒓𝒆𝒆𝒏 = 𝑴𝒗𝒑𝑴𝒐𝒓𝒕𝒉𝑷𝑴𝒄𝒂𝒎𝑴𝒎𝒑𝒐𝒃𝒋𝒆𝒄𝒕

𝑥𝑠𝑐𝑟𝑒𝑒𝑛
𝑦𝑠𝑐𝑟𝑒𝑒𝑛
𝑧𝑠𝑐𝑟𝑒𝑒𝑛

1

=

𝑛𝑥

2
0 0

𝑛𝑥−1

2

0
𝑛𝑦

2
0

𝑛𝑦−1

2

0 0 1 1
0 0 0 1

2

𝑟−𝑙
0 0 −

𝑟+𝑙

𝑟−𝑙

0
2

𝑡−𝑏
0 −

𝑡+𝑏

𝑡−𝑏

0 0
2

𝑛−𝑓
−

𝑛+𝑓

𝑛−𝑓

0 0 0 1

𝑛 0 0 0
0 𝑛 0 0
0 0 𝑛 + 𝑓 −𝑓𝑛
0 0 1 0

𝑴𝒄𝒂𝒎𝑴𝒎

𝑥𝑜
𝑦𝑜
𝑧𝑜
1



Application

Our projection is designed to 

both preserve local shape 

and maintain straight scene 

lines that are marked by the 

user with our interactive tool

Optimizing Content Preserving 

Projections for Wide-Angle Images 

[Carroll et al., SIGGRAPH 2009]

http://vis.berkeley.edu/papers/capp/

http://vis.berkeley.edu/papers/capp/


Reading

B1: Chapter 7


