3D Viewing

Hakan Bilen University of Edinburgh

Computer Graphics Fall 2017

Some slides are courtesy of Steve Marschner and Taku Komura

Slides

(Office hrs: Thursday 11.00-12.00 @Inf 1.41A)

WEBGL2

Review: Change of coordinates

Which is bigger x_p or u_p ?

$$T = \begin{pmatrix} 1 & 0 & e_x \\ 0 & 1 & e_y \\ 0 & 0 & 1 \end{pmatrix}$$

$$p \text{ in global coordinates (x,y)}$$

$$p = o + x_p x + y_p y$$

$$\begin{pmatrix} p_x \\ p_y \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_p \\ y_p \\ 1 \end{pmatrix}$$

$$p \text{ in local coordinates (u,v)}$$

$$p = e + u_p u + v_p v$$

$$\begin{pmatrix} p_x \\ p_y \\ 1 \end{pmatrix} = \begin{pmatrix} u_x & v_x & e_x \\ u_y & v_y & e_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} u_p \\ v_p \\ 1 \end{pmatrix}$$
From local to global
$$\begin{pmatrix} x_p \\ y_p \\ 1 \end{pmatrix} = \begin{pmatrix} u_x & v_x & e_x \\ u_y & v_y & e_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} u_p \\ v_p \\ 1 \end{pmatrix}$$
From local to global and from global to local
$$\begin{pmatrix} x_p \\ u_p \end{pmatrix} \begin{pmatrix} u_p \end{pmatrix} \begin{pmatrix} u_p \end{pmatrix} \begin{pmatrix} v_p \\ v_p \end{pmatrix}$$

 $\begin{pmatrix} x_p \\ y_p \\ 1 \end{pmatrix} = T \begin{pmatrix} u_p \\ v_p \\ 1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} u_p \\ v_p \\ 1 \end{pmatrix} = T^{-1} \begin{pmatrix} x_p \\ y_p \\ 1 \end{pmatrix}$

p in different coordinate frames

$$\begin{pmatrix} p_{x} \\ p_{y} \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_{p} \\ y_{p} \\ 1 \end{pmatrix} = \begin{pmatrix} u_{x}^{0} & v_{x}^{0} & e_{x}^{0} \\ u_{y}^{0} & v_{y}^{0} & e_{y}^{0} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} u_{p}^{0} \\ v_{p}^{0} \\ 1 \end{pmatrix} = \begin{pmatrix} u_{x}^{1} & v_{x}^{1} & e_{x}^{1} \\ u_{y}^{1} & v_{y}^{1} & e_{y}^{1} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} u_{p}^{1} \\ v_{p}^{1} \\ 1 \end{pmatrix}$$

$$T \operatorname{from} \begin{pmatrix} u_{p}^{0} \\ v_{p}^{0} \\ 1 \end{pmatrix} \operatorname{to} \begin{pmatrix} x_{p} \\ y_{p} \\ 1 \end{pmatrix} \operatorname{and} R \operatorname{from} \begin{pmatrix} u_{p}^{0} \\ v_{p}^{0} \\ 1 \end{pmatrix} \operatorname{to} \begin{pmatrix} u_{p}^{1} \\ v_{p}^{1} \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} \boldsymbol{p}_{\boldsymbol{x}} \\ \boldsymbol{p}_{\boldsymbol{y}} \\ 1 \end{pmatrix} = \begin{pmatrix} \boldsymbol{x}_{p} \\ \boldsymbol{y}_{p} \\ 1 \end{pmatrix} = T \begin{pmatrix} \boldsymbol{u}_{p}^{0} \\ \boldsymbol{v}_{p}^{0} \\ 1 \end{pmatrix} = TR \begin{pmatrix} \boldsymbol{u}_{p}^{1} \\ \boldsymbol{v}_{p}^{1} \\ 1 \end{pmatrix}$$

Robot example (assignment)

$y = M^1 M^2 \dots M^7 x$

x is in local coordinatesy is in world (global) coordinates

Car example

In local coordinates

У

 v^{1}

 v^{0}

 u^0

- 1. T_1 : 5 meters up from (u^0, v^0) to (u^1, v^1)
- 2. R: 30 degrees rotate from (u^1, v^1) to (u^2, v^2)
- 3. T_2 : 5 meters up from (u^2, v^2) to (u^3, v^3)

Assume it is a robot arm: $\begin{pmatrix} x_p \\ y_p \\ 1 \end{pmatrix} = T_1 R T_2 \begin{pmatrix} 0.4 \\ 0 \\ 1 \end{pmatrix}$

Rotate about a particular point

The mysterious connection with change of coordinates

 $Mp = TRT^{-1}p$

Rotate about a particular point

The mysterious connection with change of coordinates

How the heck is it different from local to global transformation?

$$(1) \begin{pmatrix} x_p \\ y_p \\ 1 \end{pmatrix} = T \begin{pmatrix} u_p \\ v_p \\ 1 \end{pmatrix} \qquad (2) \begin{pmatrix} u_q \\ v_q \\ 1 \end{pmatrix} = R \begin{pmatrix} u_p \\ v_p \\ 1 \end{pmatrix} \qquad (2) \begin{pmatrix} u_$$

Then t

$$\begin{pmatrix} x_q \\ y_q \\ 1 \end{pmatrix} = TR \begin{pmatrix} u_p \\ v_p \\ 1 \end{pmatrix}$$

We don't have the local coordinates $\begin{pmatrix} u_p \\ v_p \\ 1 \end{pmatrix}$ but global ones $\begin{pmatrix} x_p \\ y_p \\ 1 \end{pmatrix}$

and
$$\begin{pmatrix} x_q \\ y_q \\ 1 \end{pmatrix} = TRT^{-1} \begin{pmatrix} x_p \\ y_p \\ 1 \end{pmatrix}$$

Today

View transformation 3D→2D

- Camera transformation
- Projective transformation
- Viewport transformation

Pipeline of transformations

Sequence of transformations

Which transformations are from continuous to continuous?

Slide credits: S. Marschner

Pipeline of transformations

Sequence of transformations

Slide credits: S. Marschner

Camera (Eye) Transformation

World space to camera space

- Depends on pose of camera
 - eye position (e)
 - gaze direction (g)
 - view-up vector (t)

Review: Linear Algebra

Dot product

- $\boldsymbol{a} \cdot \boldsymbol{b} = ||\boldsymbol{a}|| ||\boldsymbol{b}|| \cos\phi$
- $a \cdot b = x_a x_b + y_a y_b$
- Projection a onto b $a \rightarrow b = ||a|| \cos \phi = \frac{a \cdot b}{||b||}$

•
$$a \cdot b = b \cdot a, a \cdot (b + c) = a \cdot b + a \cdot c, ka \cdot b = a \cdot kb$$

Cross product

- $||a \times b|| = ||a||||b||sin\phi$
- $x \times y = z, y \times x = -z$
- $y \times z = x, z \times y = -x$

•
$$x \times z = -y, z \times x = -y$$

• $a \times b = \begin{pmatrix} y_a z_b - z_a y_b \\ z_a x_b - x_a z_b \\ x_a y_b - y_a x_b \end{pmatrix}$

Construct a new coordinate system in 3D

Orthonormal basis

- 1. Give me two vectors (x, y) which are not collinear
- 2. Normalize x such that ||x|| = 1, $\tilde{x} = \frac{x}{||x||}$

3. If
$$\tilde{x} \cdot \tilde{y} \neq 0$$
, $w = \tilde{x}$, $u = \frac{w \times \tilde{y}}{\|w \times \tilde{y}\|}$, otherwise, $w = \tilde{x}$, $u = \frac{y}{\|y\|}$
4. $\mathbf{v} = w \times u$

Construct camera coordinates

Pipeline of transformations

• Objects far away appear smaller, closer objects appear bigger

- Specified by
 - center of projection
 - focal distance (distance from the eye to the projection plane)

Der Zeichner der Laute, Dürer

similar triangles: $\frac{y_s}{d} = \frac{y_s}{-z} \rightarrow y_s = -\frac{dy}{z}$

Slide credits: S. Marschner

How to encode perspective?

Homogeneous Coordinates

Revisited

• Introduced to combine linear and translation part (in Lecture 5)

- True purpose of homogenous coordinates is projection
- Perspective projection requires division

$$\begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \sim \begin{pmatrix} wx \\ wy \\ wz \\ w \end{pmatrix}$$

- If w > 0, divide by w to convert into Cartesian coordinates
- If w = 0, it is a point at infinity

Equivalence of homogenous coordinates

Image credit: W. Matusik

Move z to w:

$$\begin{pmatrix} x_s \\ y_s \\ 1 \end{pmatrix} = \begin{pmatrix} -dx/z \\ -dy/z \\ 1 \end{pmatrix} \sim \begin{pmatrix} dx \\ dy \\ -z \end{pmatrix} = \begin{pmatrix} d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \\ 0 & 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Parallel Projection

• Focal length (d) is infinite

 $x_s = x$, $y_s = x$

- Rays are parallel and orthogonal to image
- Toss out z

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Bounding view volume

In practice, we are interested to visualize the objects

- in front of the camera
- in a bounded volume
 - not too close, far
- Volume shapes
- A box for parallel projection
- a frustum (truncated pyramid) for perspective projection

Clip surfaces outside the view volume are clipped

Bounding view volume

Image credit: Hughes

Bounded View Volume

- Use near plane distances as the projection distance (d = -n)
- Scale by -1 to have fewer minus sign

$$\begin{pmatrix} x_s \\ y_s \\ 1 \end{pmatrix} = \begin{pmatrix} nx/z \\ ny/z \\ 1 \end{pmatrix} \sim \begin{pmatrix} nx \\ ny \\ -z \end{pmatrix} = \begin{pmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Problem: Keep depth info for the later hidden surface elimination

Canonical View Volume

• Preserve depth on near and far planes in z_s

$$\begin{pmatrix} x_{s} \\ y_{s} \\ z_{s} \\ 1 \end{pmatrix} \sim \begin{pmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \\ z \end{pmatrix} = \begin{pmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

• choose a and b so that $z_s(z = n) = n$ and $z_s(z = f) = f$.

$$\tilde{z}(z) = az + b$$

$$z_s(z) = \frac{\tilde{z}}{z} = \frac{az + b}{z}$$
want $z_s(z = n) = n$ and $z_s(z = f) = f$

$$a = (n + f) \text{ and } b = -nf$$

Perspective Matrix

$$P\begin{pmatrix}x\\y\\z\\1\end{pmatrix} = \begin{pmatrix}n & 0 & 0 & 0\\0 & n & 0 & 0\\0 & 0 & n+f & -fn\\0 & 0 & 1 & 0\end{pmatrix}\begin{pmatrix}x\\y\\z\\1\end{pmatrix} = \begin{pmatrix}\frac{nx}{z}\\(n+f)z - fn\\z\end{pmatrix}$$
$$= \begin{pmatrix}\frac{nx}{z}\\\frac{ny}{z}\\n+f - \frac{fn}{z}\\1\end{pmatrix}$$

Check whether **P** preserves the relative order of z values (f < z < n)

Transforming the View Frustum

Canonical view volume

- Frustrum dimensions
 - $left \leq x \leq right$,
 - $bottom \le y \le top$,
 - $near \leq z \leq far$

•
$$M_{per} = M_{orth}P$$

• $\begin{pmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -fn \\ 0 & 0 & 1 & 0 \end{pmatrix}$

Pipeline of transformations

Viewport Transform

Canonical space to screen space

Pipeline of transformations

Canonical space to screen space

- 1. Transform into world coords (modeling transform)
- 2. Transform into camera coords (camera transform)
- 3. Perspective matrix,
- 4. Orthographic projection,
- 5. View Transform

 $p_{screen} = M_{vp}M_{orth}PM_{cam}M_mp_{object}$

$$\begin{pmatrix} x_{screen} \\ y_{screen} \\ z_{screen} \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{n_x}{2} & 0 & 0 & \frac{n_x - 1}{2} \\ 0 & \frac{n_y}{2} & 0 & \frac{n_y - 1}{2} \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -fn \\ 0 & 0 & 1 & 0 \end{pmatrix} M_{cam} M_m \begin{pmatrix} x_o \\ y_o \\ z_o \\ 1 \end{pmatrix}$$

Application

Our projection is designed to both preserve local shape and maintain straight scene lines that are marked by the user with our interactive tool

Optimizing Content Preserving Projections for Wide-Angle Images [Carroll et al., SIGGRAPH 2009]

http://vis.berkeley.edu/papers/capp/

Perspective

Stereographic

Our Result

Reading

B1: Chapter 7