
Geometric Transformations

Hakan Bilen

University of Edinburgh

Computer Graphics

Fall 2017

PIAZZA!

Setting Objects in the Scene

• Once the models are prepared, we need to place them in the

environment

• We need to know the vertex locations of the objects in the world

coordinate system

• But objects are only defined in their own local coordinate system

Transformations

We translate, rotate and scale the vertices in the world coordinate system

Today
2D geometric transformations

Homogeneous coordinates

Change of coordinates

3D cases

Some notation

• Scalars are in Greek letters 𝛼, 𝛽, 𝛾 etc.

• Vectors are in bold and lowercase 𝒖 =
𝑢
𝑣

• Matrices are in bold and UPPERCASE 𝐌 =
𝑚𝑥𝑥 𝑚𝑥𝑦

𝑚𝑦𝑥 𝑚𝑦𝑦

Translation

2D Linear Transformations

• Simplest transformation: 𝐱′ = 𝐱 + 𝒕
𝑥′
𝑦′

=
𝑥
𝑦 +

𝑡𝑥
𝑡𝑦

• Inverse:
𝑥
𝑦 =

𝑥′
𝑦′

−
𝑡𝑥
𝑡𝑦

Linear Transformations

• A more general family of geometric transformations

𝒙′ = 𝑴𝒙,
𝑥′
𝑦′

=
𝑚𝑥𝑥 𝑚𝑥𝑦

𝑚𝑦𝑥 𝑚𝑦𝑦

𝑥
𝑦

• Why is it linear?

𝑴(𝛼𝒙 + 𝒚) = 𝛼𝑴𝒙 +𝑴𝒚

• What can we do with such transformations?

• Uniform scale

• Non-uniform scale

• Rotation

• Shear

• Reflection

Uniform Scale

2D Linear Transformations

•
𝑠 0
0 𝑠

𝑥
𝑦 =

𝑠𝑥
𝑠𝑦

2 0
0 2

Non-uniform Scale

2D Linear Transformations

•
𝑠𝑥 0
0 𝑠𝑦

𝑥
𝑦 =

𝑠𝑥𝑥
𝑠𝑦𝑦

2 0
0 0.6

Rotation

2D Linear Transformations

•
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

𝑥
𝑦

0.87 −0.5
0.5 0.87

Reflection

2D Linear Transformations

•
−1 0
0 1

𝑥
𝑦 =

−𝑥
𝑦

Shear

2D Linear Transformations

•
1 𝛼
0 1

𝑥
𝑦 =

𝑥 + 𝛼𝑦
𝑦

1 0.5
0 1

Composition

2D Linear Transformations

• You moved an object but you didn’t like the position, then you

move it again

• Can we do it at once?

• Translation:

• 𝒙′ = 𝒙 + 𝒕 and then 𝒙′′ = 𝒙′ + 𝒗

• Easy to compose 𝒙′′ = 𝒙 + 𝒕 + 𝒗= 𝒙 + 𝒗 + 𝒕

• 2D linear transformation

• 𝒙′ = 𝑴𝒙 and then 𝒙′′ = 𝑷𝒙′

• How do we compose?

• 𝒙′′ = 𝑷𝑴𝒙?

• 𝒙′′ = 𝑴𝑷𝒙?

• 𝑷𝑴𝒙 =?𝐌𝑷𝒙

Composition

2D Linear Transformations

Rotate + Shear =? Shear + Rotate

Shear

Rotate

Combining linear with translation

• 𝒙𝑺
′ = 𝑴𝑺𝒙𝑺 + 𝒕𝒔 and then 𝒙′𝑷 = 𝑴𝑷𝒙𝑺

′ + 𝒕𝒑

• Let’s compose it

𝒙′𝑷 = 𝑴𝑷𝒙𝑺
′ + 𝒕𝒑

𝒙′𝑷 = 𝑴𝑷 𝑴𝑺𝒙𝑺 + 𝒕𝒔 + 𝒕𝒑
𝒙′𝑷 = 𝑴𝑷𝑴𝑺𝒙𝑺 +𝑴𝑺𝒕𝒔 + 𝒕𝒑

• This will work but it is messy.

• Can we use a single transformation matrix to model all?

Homogenous coordinates

Combining linear with translation

• A cheap trick for elegance

• Add an extra

• component for vectors

• row and column vector for matrices

•
𝑎 𝑏
𝑐 𝑑

𝑥
𝑦 =

𝑎𝑥 + 𝑏𝑦
𝑐𝑥 + 𝑑𝑦

↔
𝑎 𝑏 0
𝑐 𝑑 0
0 0 1

𝑥
𝑦
1

=
𝑎𝑥 + 𝑏𝑦
𝑐𝑥 + 𝑑𝑦

1

2D linear transformations

Homogenous coordinates

• Translation:

1 0 𝑡𝑥
0 1 𝑡𝑦
0 0 1

𝑥
𝑦
1

=
𝑥 + 𝑡𝑥
𝑦 + 𝑡𝑦
1

• Rotation:
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 1

𝑥
𝑦
1

• Scaling:

𝑠𝑥 0 0
0 𝑠𝑦 0

0 0 1

𝑥
𝑦
1

Composition

Homogenous coordinates

• Let’s go back to composition with translation

𝒙𝑺
′ = 𝑴𝑺𝒙𝑺 + 𝒕𝒔 and then 𝒙′𝑷 = 𝑴𝑷𝒙𝑺

′ + 𝒕𝒑

• Composition with 3x3 matrix multiplication

𝑴𝒑 𝒕𝒑
0 1

𝑴𝒔 𝒕𝒔
0 1

𝒙𝑺
1

=
𝑴𝑷𝑴𝑺𝒙𝑺 + (𝑴𝑺𝒕𝒔 + 𝒕𝒑)

1

•Exactly the same but cleaner and more generic

Car Example

Why is this useful?

1. I sat in the car and find the side mirror is 0.4m on my

right

2. I started my car and drove 5m forward

3. turned 30 degrees to right (𝑐𝑜𝑠300 =
3

2
, 𝑠𝑖𝑛300 = 1/2)

4. moved 5m forward again

What is the position of the side mirror now, relative to

where I was sitting in the beginning?

𝑴𝒙 =
1 0 0
0 1 5
0 0 1

3/2 1/2 0

−1/2 3/2 0
0 0 1

1 0 0
0 1 5
0 0 1

0.4
0
1

=
2.85
9.13
1

𝑴𝒙 = 𝑴𝟏𝑴𝟐…𝑴𝟕𝒙

Affine transformations

• So far the set of transformations we have seen is called “affine”

transformations

• Straight lines, planes preserved

• Parallel lines, planes preserved

• Midpoints preserved

Rotate Shear

Properties of Matrices

• Translations: linear part is the identity

•

1 0 𝑡𝑥
0 1 𝑡𝑦
0 0 1

−1

=
1 0 −𝑡𝑥
0 1 −𝑡𝑦
0 0 1

• Scales: linear part is diagonal

•

𝑠𝑥 0 0
0 𝑠𝑦 0

0 0 1

−1

=
1/𝑠𝑥 0 0

0 1/𝑠𝑦 0

0 0 1

• Rotations: linear part is orthogonal

• Columns of R are mutually orthonormal: 𝑅𝑅T = 𝑅T𝑅 = 𝐼

• Determinant of R is 1.0 det 𝑅 = I

•

𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 1

−1

=
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0

−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0

0 0 1

Slide credits: S. Marschner

Transforming points and vectors

• Difference between points and vectors

• vectors are just offsets (𝑝 − 𝑞)

• points have a location (vector offset from a fixed origin)

• Points and vectors transform differently

• points can be translated but vectors cannot be

𝑣 = 𝑝 − 𝑞
𝐴 𝑝 = 𝑀𝑝 + 𝑡
𝐴 𝑝 − 𝑞 = 𝑀𝑝 + 𝑡 − (𝑀𝑞 + 𝑡)

= 𝑀 𝑝 − 𝑞 = 𝑀𝑣

• Homogenous cords. have 0 instead of 1

Slide credits: S. Marschner

What you get by rotating

Rotate about a particular point

Change of coordinates

Rotate

What you want is

Rotate about a particular point

Change of coordinates

Rotate

𝑀 = 𝑇−1

Rotate about a particular point

Change of coordinates

𝑇−1

𝑀 = 𝑅𝑇−1

Rotate about a particular point

Change of coordinates

𝑅

𝑀 = 𝑇𝑅𝑇−1

Rotate about a particular point

Change of coordinates

𝑇

𝑀 = 𝑇−1

Scale along a particular axis

Change of coordinates

𝑇−1

𝑀 = 𝑅−1𝑇−1

Scale along a particular axis

Change of coordinates

𝑅−1

𝑀 = 𝑆𝑅−1𝑇−1

Scale along a particular axis

Change of coordinates

𝑆

𝑀 = 𝑅𝑆𝑅−1𝑇−1

Scale along a particular axis

Change of coordinates

𝑅

Finally 𝑀 = 𝑇𝑅𝑆𝑅−1𝑇−1

Scale along a particular axis

Change of coordinates

𝑇

𝒑 = 𝑥𝑝, 𝑦𝑝 = 𝒐 + 𝑥𝑝𝒙 + 𝑦𝑝𝒚

𝒑 = 𝑢𝑝, 𝑣𝑝 = 𝒆 + 𝑢𝑝𝒖 + 𝑣𝑝𝒗

• 𝒐 + 𝑥𝑝𝒙 + 𝑦𝑝𝒚 = 𝒆 + 𝑢𝑝𝒖 + 𝑣𝑝𝒗

• Assuming x and y are canonical

•

𝑥𝑝
𝑦𝑝
1

=
𝑥𝑢 𝑥𝑣 𝑥𝑒
𝑦𝑢 𝑦𝑣 𝑦𝑒
0 0 1

𝑢𝑝
𝑣𝑝
1

• 𝑝𝑥𝑦 =
𝒖 𝒗 𝒆
0 0 1

𝑝𝑢𝑣

• 𝑝𝑢𝑣 =
𝒖 𝒗 𝒆
0 0 1

−1
𝑝𝑥𝑦

General case

Change of coordinates

y

x

v u
p

o

e

General case

Change of coordinates

𝑀 = 𝑇𝑅𝑆𝑅−1𝑇−1

𝑝′𝑥𝑦 =
𝒖 𝒗 𝒆
0 0 1

𝑆
𝒖 𝒗 𝒆
0 0 1

−1
𝑝𝑥𝑦

𝑀

y

x

v u
p

o

e

Translation

3D Affine transformations

𝑥′
𝑦′

𝑧′
1

=

1 0 0 𝑡𝑥
0 1 0 𝑡𝑦
0 0 1 𝑡𝑧
0 0 0 1

𝑥
𝑦
𝑧
1

Slide credits: S. Marschner

Translation

3D Affine transformations

𝑥′
𝑦′

𝑧′
1

=

1 0 0 𝑡𝑥
0 1 0 𝑡𝑦
0 0 1 𝑡𝑧
0 0 0 1

𝑥
𝑦
𝑧
1

Slide credits: S. Marschner

Translation

3D Affine transformations

𝑥′
𝑦′

𝑧′
1

=

1 0 0 𝑡𝑥
0 1 0 𝑡𝑦
0 0 1 𝑡𝑧
0 0 0 1

𝑥
𝑦
𝑧
1

Slide credits: S. Marschner

Translation

3D Affine transformations

𝑥′
𝑦′

𝑧′
1

=

1 0 0 𝑡𝑥
0 1 0 𝑡𝑦
0 0 1 𝑡𝑧
0 0 0 1

𝑥
𝑦
𝑧
1

Slide credits: S. Marschner

Scaling

3D Affine transformations

𝑥′
𝑦′

𝑧′
1

=

𝑠𝑥 0 0 0
0 𝑠𝑦 0 0

0 0 𝑠𝑧 0
0 0 0 1

𝑥
𝑦
𝑧
1

Slide credits: S. Marschner

Scaling

3D Affine transformations

𝑥′
𝑦′

𝑧′
1

=

𝑠𝑥 0 0 0
0 𝑠𝑦 0 0

0 0 𝑠𝑧 0
0 0 0 1

𝑥
𝑦
𝑧
1

Slide credits: S. Marschner

Scaling

3D Affine transformations

𝑥′
𝑦′

𝑧′
1

=

𝑠𝑥 0 0 0
0 𝑠𝑦 0 0

0 0 𝑠𝑧 0
0 0 0 1

𝑥
𝑦
𝑧
1

Slide credits: S. Marschner

Scaling

3D Affine transformations

𝑥′
𝑦′

𝑧′
1

=

𝑠𝑥 0 0 0
0 𝑠𝑦 0 0

0 0 𝑠𝑧 0
0 0 0 1

𝑥
𝑦
𝑧
1

Slide credits: S. Marschner

Rotation around z axis

3D Affine transformations

𝑥′
𝑦′

𝑧′
1

=

𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0 0
0 0 1 0
0 0 0 1

𝑥
𝑦
𝑧
1

Slide credits: S. Marschner

Rotation around x axis

3D Affine transformations

𝑥′
𝑦′

𝑧′
1

=

1 0 0 0
0 𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0
0 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 0 1

𝑥
𝑦
𝑧
1

Slide credits: S. Marschner

Rotation around y axis

3D Affine transformations

𝑥′
𝑦′

𝑧′
1

=

𝑐𝑜𝑠𝜃 0 −𝑠𝑖𝑛𝜃 0
0 1 0 0

𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃 0
0 0 0 1

𝑥
𝑦
𝑧
1

Slide credits: S. Marschner

Summary

• Transformations: translation, rotation, scaling and shearing

• Using homogeneous transformation, 2D (3D) transformations can be

represented by multiplication of a 3x3 (4x4) matrix

• Change of coordinates

• 3D transformations

Reading

B1: Chapter 6

