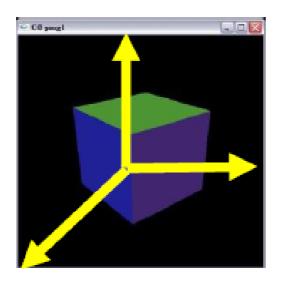
Geometric Transformations

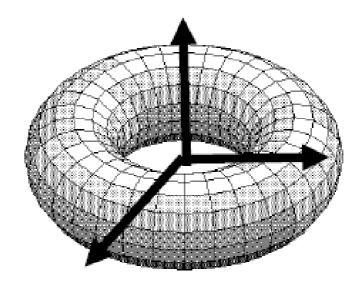
Hakan Bilen University of Edinburgh

Computer Graphics Fall 2017

Setting Objects in the Scene

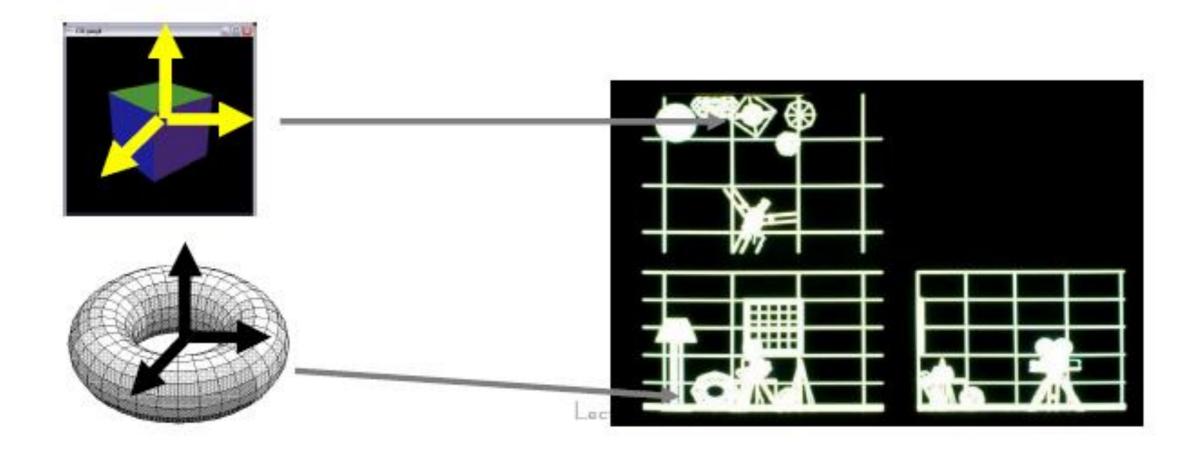
- Once the models are prepared, we need to place them in the environment
- We need to know the vertex locations of the objects in the world coordinate system
- But objects are only defined in their own local coordinate system





Transformations

We translate, rotate and scale the vertices in the world coordinate system



Today

2D geometric transformations Homogeneous coordinates Change of coordinates 3D cases

Some notation

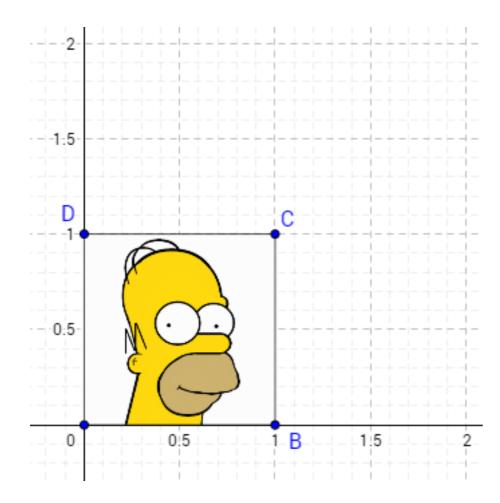
- Scalars are in Greek letters α , β , γ etc.
- Vectors are in bold and lowercase $u = \begin{pmatrix} u \\ v \end{pmatrix}$
- Matrices are in bold and UPPERCASE $\mathbf{M} = \begin{pmatrix} m_{xx} & m_{xy} \\ m_{yx} & m_{yy} \end{pmatrix}$

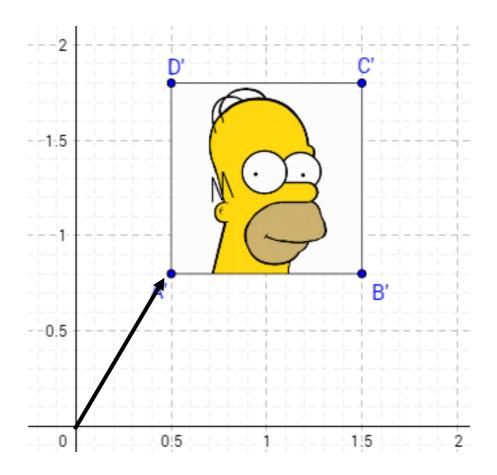
Translation

• Simplest transformation: $\mathbf{x}' = \mathbf{x} + \mathbf{t}$

$$\binom{x'}{y'} = \binom{x}{y} + \binom{t_x}{t_y}$$

• Inverse: $\binom{x}{y} = \binom{x'}{y'} - \binom{t_x}{t_y}$





• A more general family of geometric transformations

$$\boldsymbol{x}' = \boldsymbol{M}\boldsymbol{x}, \qquad \begin{pmatrix} \boldsymbol{x}' \\ \boldsymbol{y}' \end{pmatrix} = \begin{pmatrix} m_{xx} & m_{xy} \\ m_{yx} & m_{yy} \end{pmatrix} \begin{pmatrix} \boldsymbol{x} \\ \boldsymbol{y} \end{pmatrix}$$

• Why is it linear?

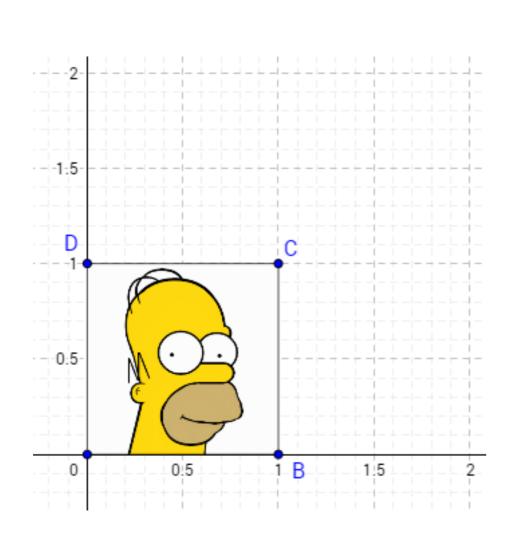
$$M(\alpha x + y) = \alpha M x + M y$$

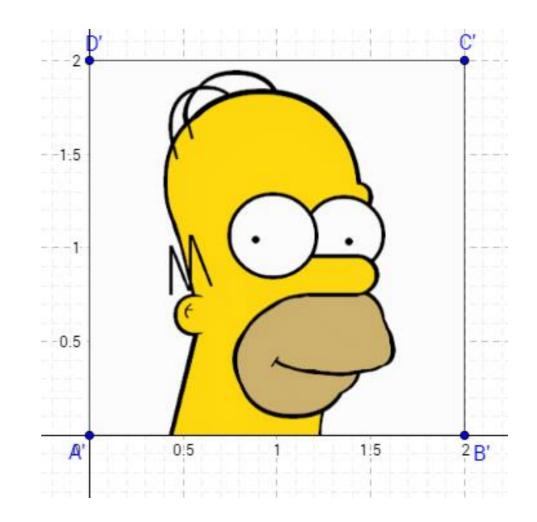
- What can we do with such transformations?
 - Uniform scale
 - Non-uniform scale
 - Rotation
 - . Shear
 - Reflection

Uniform Scale

 $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$

• $\begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} sx \\ sy \end{pmatrix}$

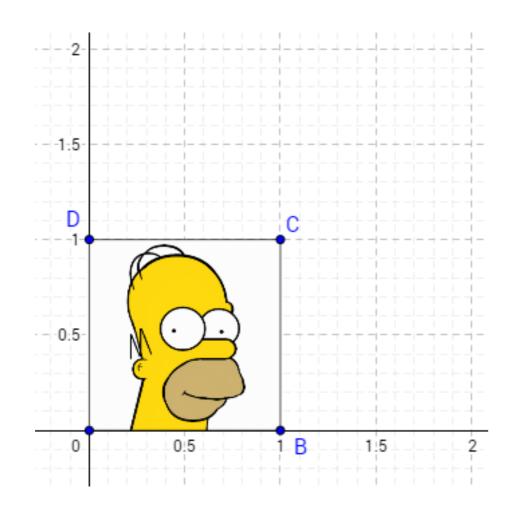


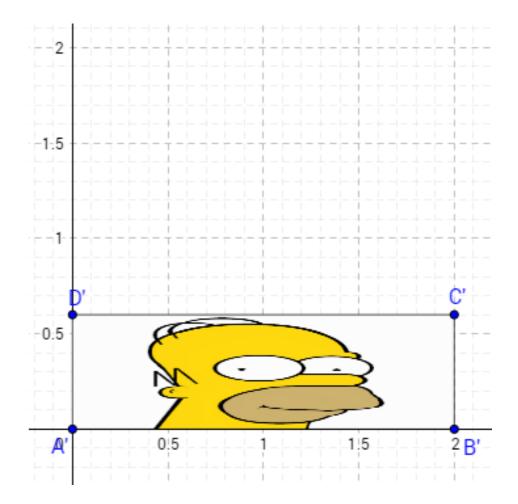


Non-uniform Scale

•
$$\begin{pmatrix} S_{\chi} & 0\\ 0 & S_{y} \end{pmatrix} \begin{pmatrix} \chi\\ y \end{pmatrix} = \begin{pmatrix} S_{\chi}\chi\\ S_{y}y \end{pmatrix}$$

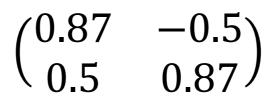
 $\begin{pmatrix} 2 & 0 \\ 0 & 0.6 \end{pmatrix}$

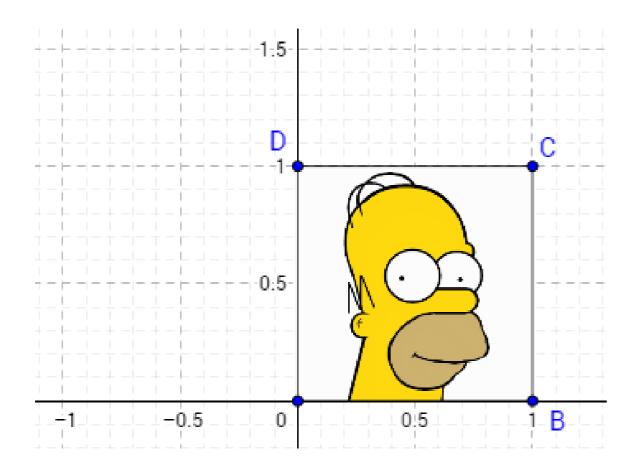


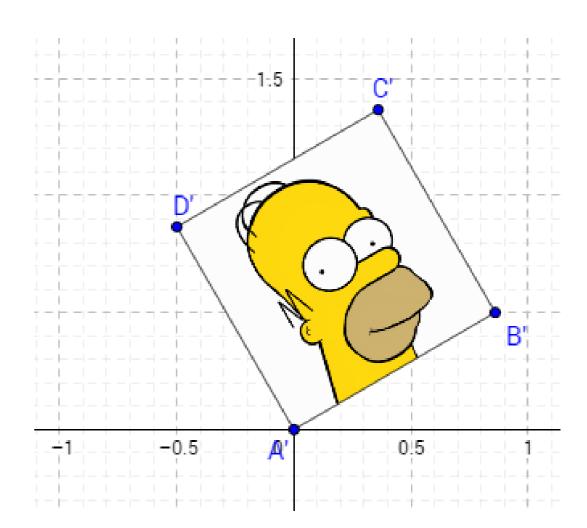


Rotation

• $\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

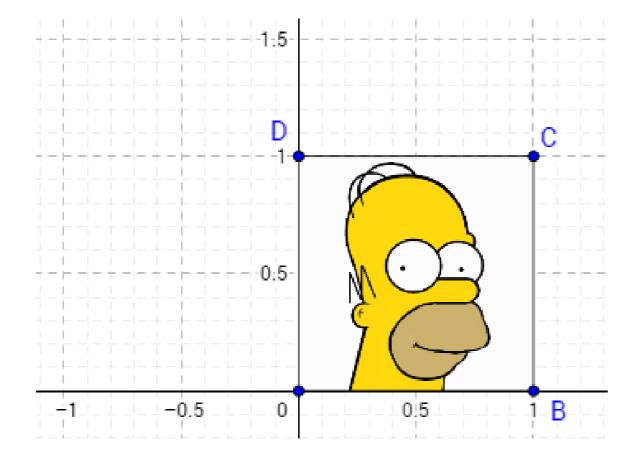


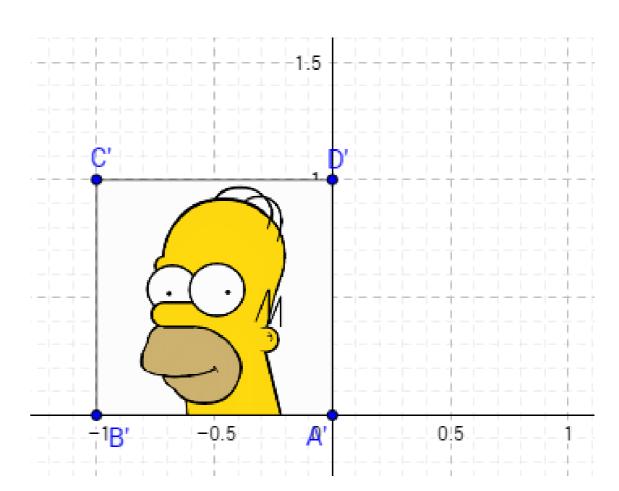




Reflection

• $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ y \end{pmatrix}$

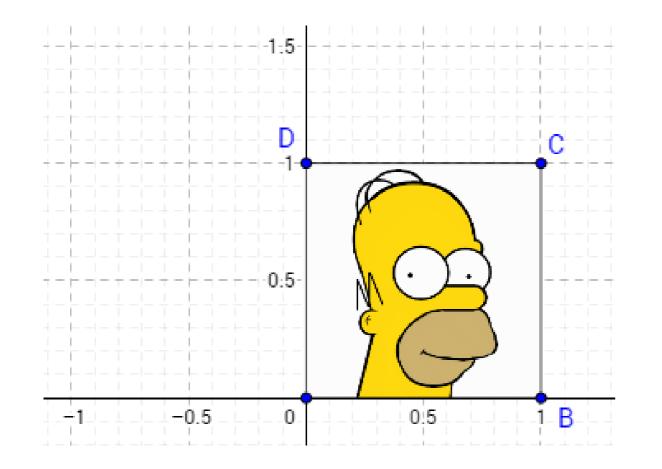


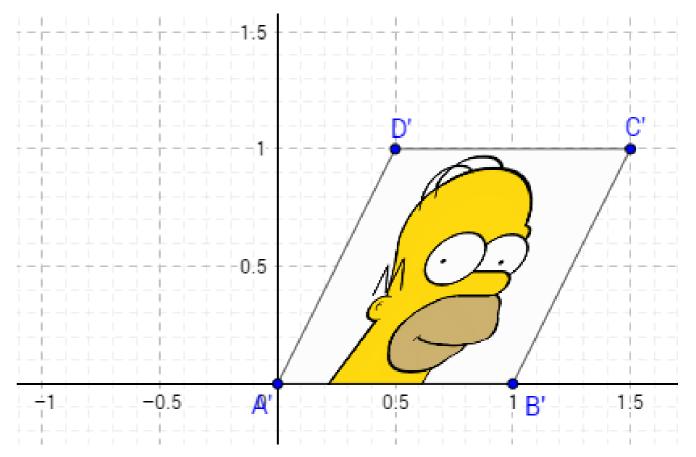


Shear

•
$$\begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + \alpha y \\ y \end{pmatrix}$$

 $\begin{pmatrix} 1 & 0.5 \\ 0 & 1 \end{pmatrix}$



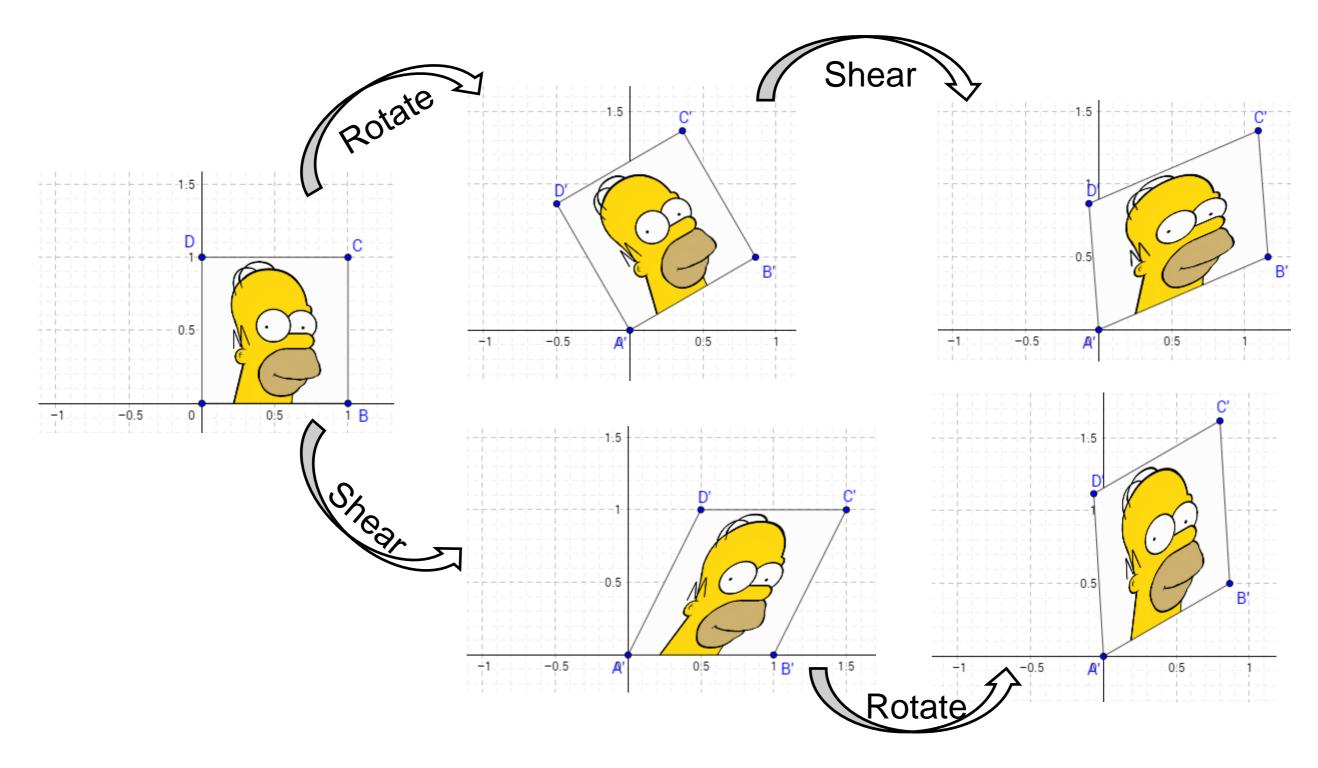


Composition

- You moved an object but you didn't like the position, then you move it again
- Can we do it at once?
- Translation:
 - x' = x + t and then x'' = x' + v
 - Easy to compose x'' = x + t + v = x + v + t
- 2D linear transformation
 - x' = Mx and then x'' = Px'
 - How do we compose?
 - $\cdot x'' = PMx?$
 - $\cdot x'' = MPx?$
 - PMx = ?MPx

Composition

Rotate + Shear =? Shear + Rotate



Combining linear with translation

•
$$x'_S = M_S x_S + t_s$$
 and then $x'_P = M_P x'_S + t_p$

- Let's compose it $x'_{P} = M_{P}x'_{S} + t_{p}$ $x'_{P} = M_{P}(M_{S}x_{S} + t_{s}) + t_{p}$ $x'_{P} = M_{P}M_{S}x_{S} + M_{S}t_{s} + t_{p}$
- This will work but it is messy.
- Can we use a single transformation matrix to model all?

Combining linear with translation

Homogenous coordinates

- A cheap trick for elegance
- Add an extra
 - component for vectors
 - row and column vector for matrices

•
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$$

Homogenous coordinates

2D linear transformations

Translation:
$$\begin{pmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} x + t_x \\ y + t_y \\ 1 \end{pmatrix}$$

• Rotation:

$$\begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x\\ y\\ 1 \end{pmatrix}$$

• Scaling:

$$\begin{pmatrix} s_{\chi} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Homogenous coordinates

Composition

- Let's go back to composition with translation $x'_S = M_S x_S + t_s$ and then $x'_P = M_P x'_S + t_p$
- Composition with 3x3 matrix multiplication

$$\begin{pmatrix} \boldsymbol{M}_{p} & \boldsymbol{t}_{p} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \boldsymbol{M}_{s} & \boldsymbol{t}_{s} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \boldsymbol{x}_{s} \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix} \boldsymbol{M}_{P}\boldsymbol{M}_{S}\boldsymbol{x}_{S} + (\boldsymbol{M}_{S}\boldsymbol{t}_{s} + \boldsymbol{t}_{p}) \\ 1 \end{pmatrix}$$

•Exactly the same but cleaner and more generic

Why is this useful?

Car Example

- 1. I sat in the car and find the side mirror is 0.4m on my right
- 2. I started my car and drove 5m forward

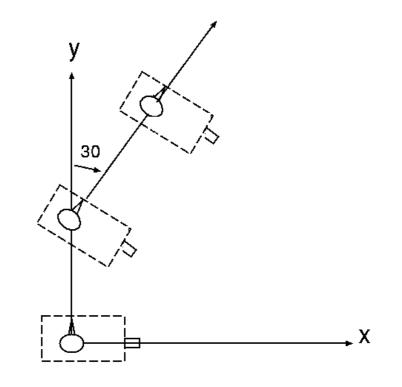
3. turned 30 degrees to right (
$$cos 30^0 = \frac{\sqrt{3}}{2}$$
, $sin 30^0 = 1/2$)

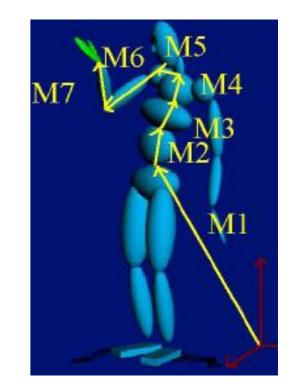
4. moved 5m forward again

What is the position of the side mirror now, relative to where I was sitting in the beginning?

$$Mx = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{3}/2 & 1/2 & 0 \\ -1/2 & \sqrt{3}/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0.4 \\ 0 \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix} 2.85 \\ 9.13 \\ 1 \end{pmatrix}$$

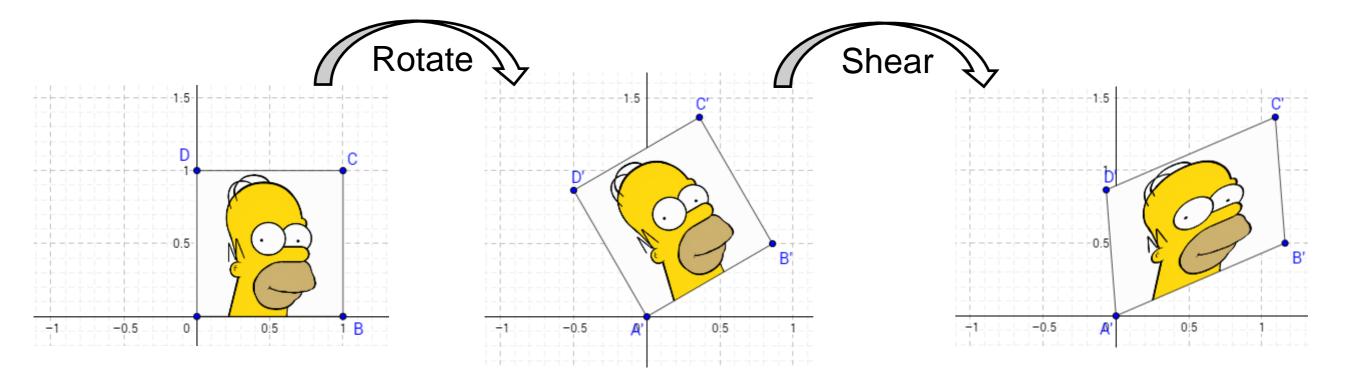
 $Mx = M^1 M^2 \dots M^7 x$





Affine transformations

- So far the set of transformations we have seen is called "affine" transformations
 - Straight lines, planes preserved
 - Parallel lines, planes preserved
 - Midpoints preserved



Properties of Matrices

• Translations: linear part is the identity

$$\begin{pmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 & -t_x \\ 0 & 1 & -t_y \\ 0 & 0 & 1 \end{pmatrix}$$

• Scales: linear part is diagonal

$$\begin{pmatrix} s_{\chi} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1/s_{\chi} & 0 & 0 \\ 0 & 1/s_{y} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- Rotations: linear part is orthogonal
 - Columns of R are mutually orthonormal: $RR^{T} = R^{T}R = I$
 - Determinant of R is 1.0 [det(R) = I]

$$\begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Slide credits: S. Marschner

Transforming points and vectors

- Difference between points and vectors
 - vectors are just offsets (p q)
 - points have a location (vector offset from a fixed origin)
- Points and vectors transform differently
 - points can be translated but vectors cannot be

$$v = p - q$$

$$A(p) = Mp + t$$

$$A(p - q) = Mp + t - (Mq + t)$$

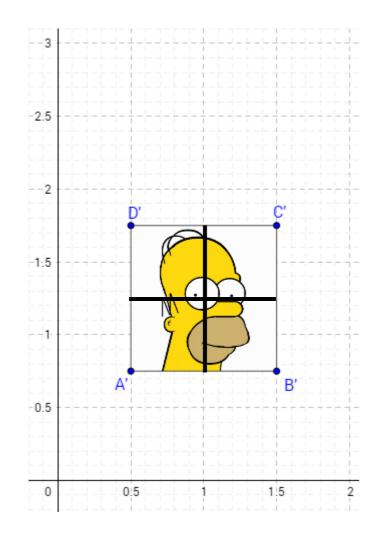
$$= M(p - q) = Mv$$

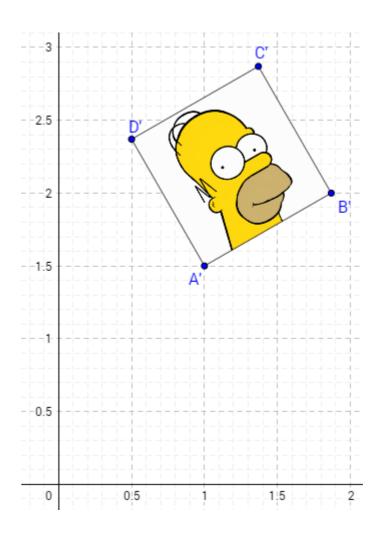
Homogenous cords. have 0 instead of 1

Slide credits: S. Marschner

Rotate about a particular point

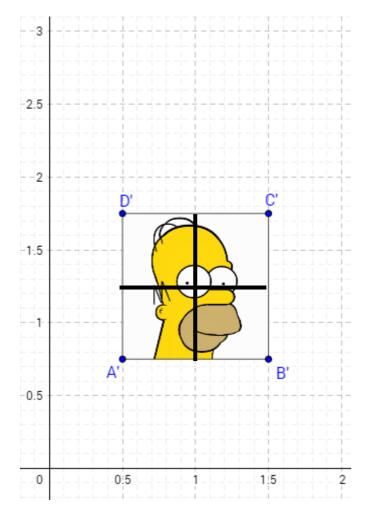
What you get by rotating

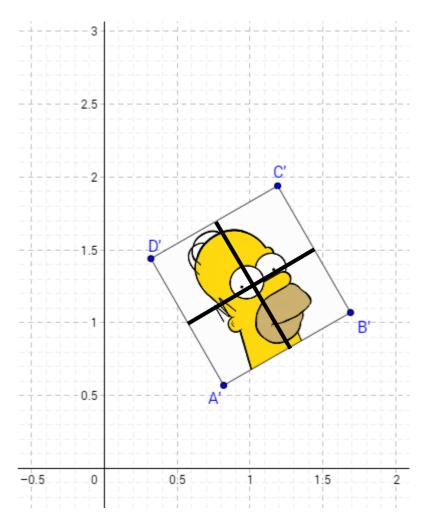




Rotate about a particular point

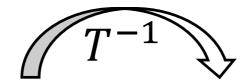
What you want is

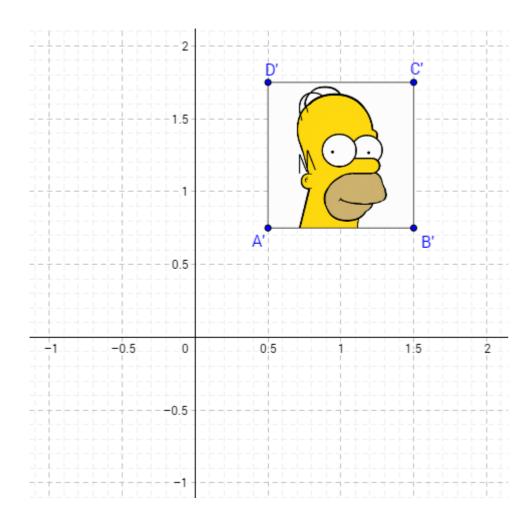


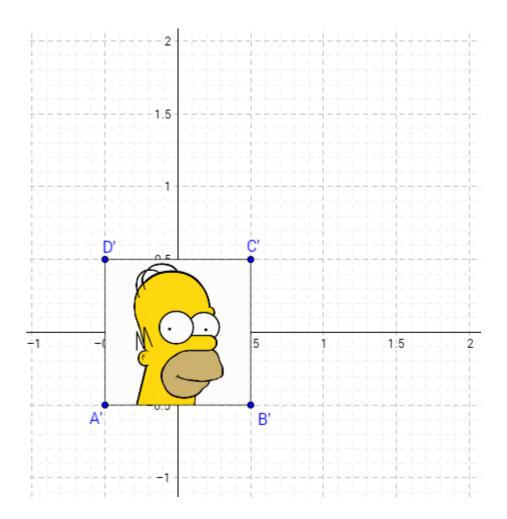


Rotate about a particular point

 $M = T^{-1}$

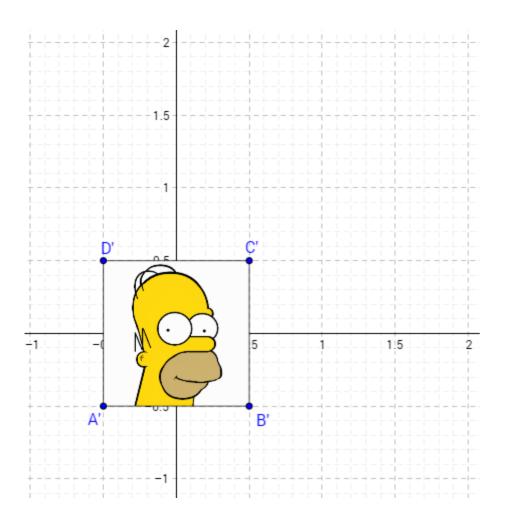






Rotate about a particular point

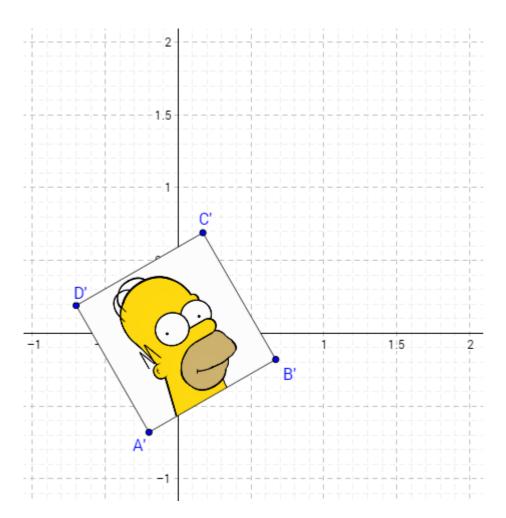
 $M = RT^{-1}$

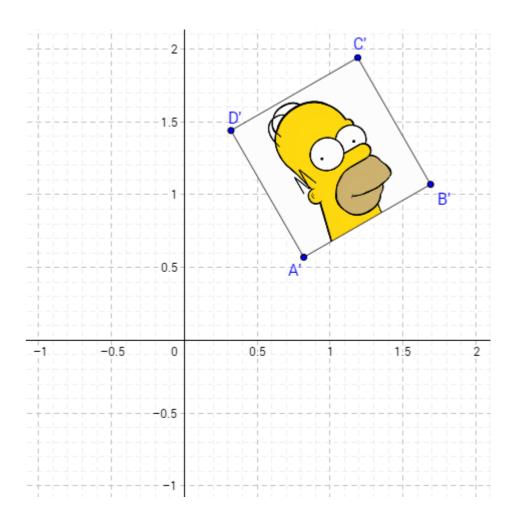




Rotate about a particular point

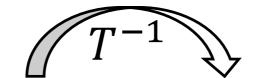
 $M = TRT^{-1}$

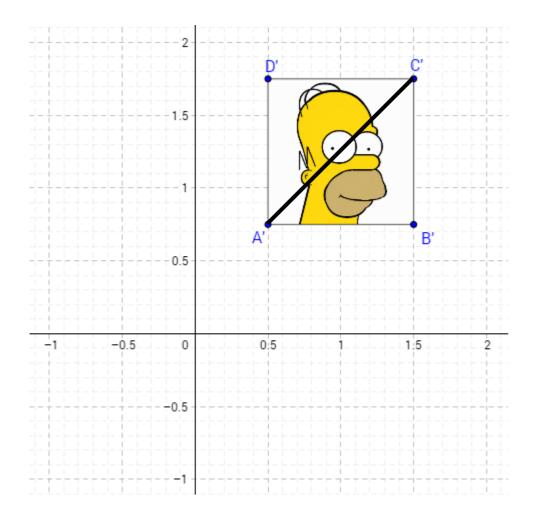


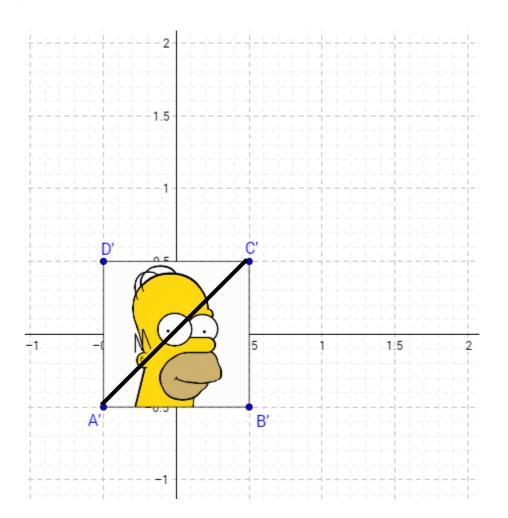


Scale along a particular axis

 $M = T^{-1}$

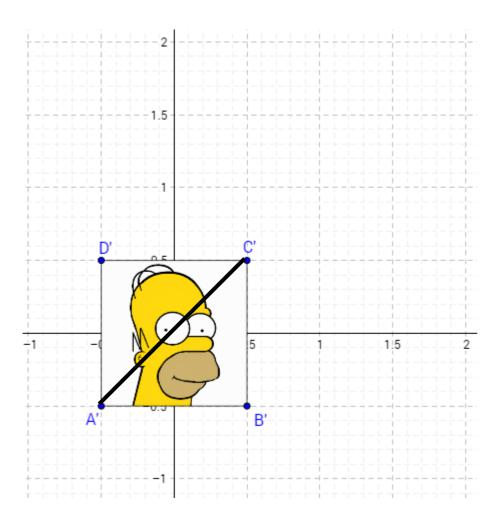


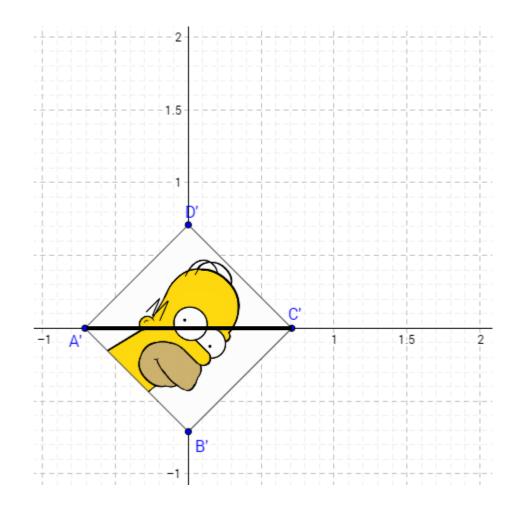




Scale along a particular axis

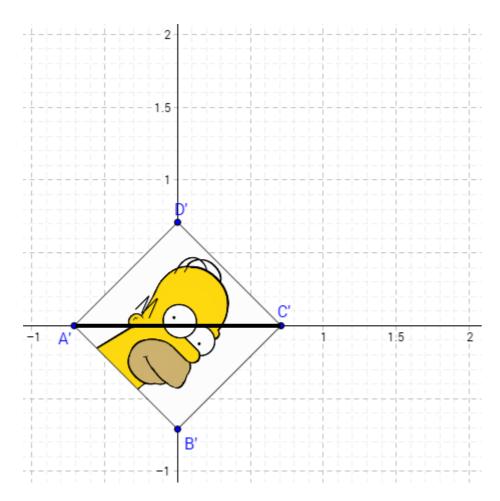
 $M = R^{-1}T^{-1}$

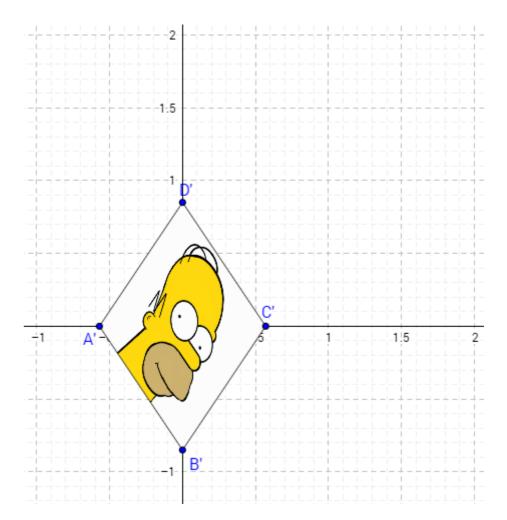




Scale along a particular axis

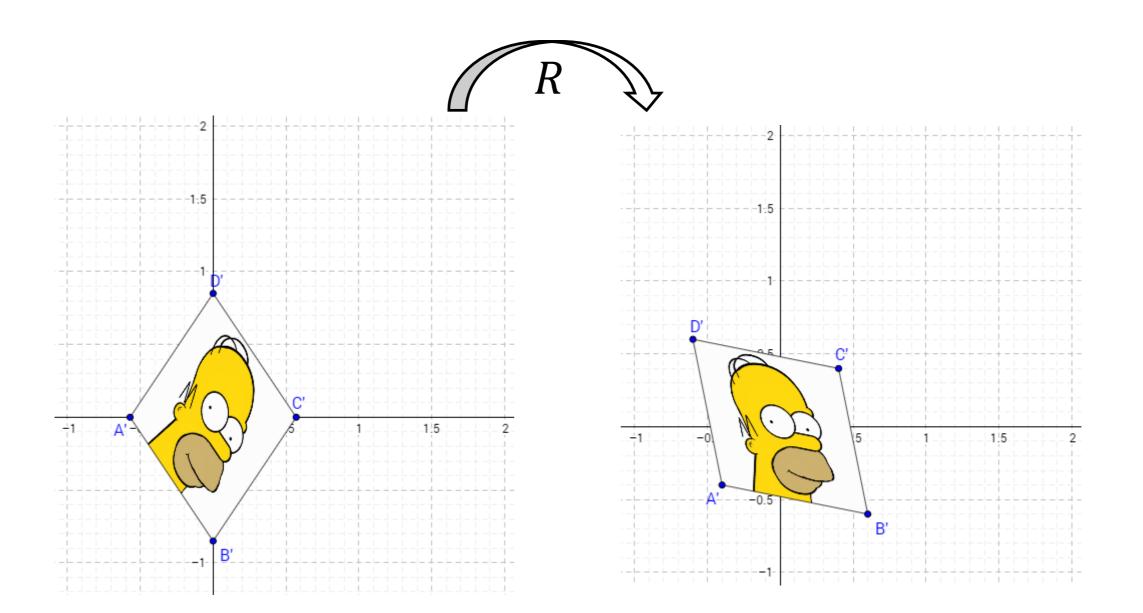
 $M = SR^{-1}T^{-1}$





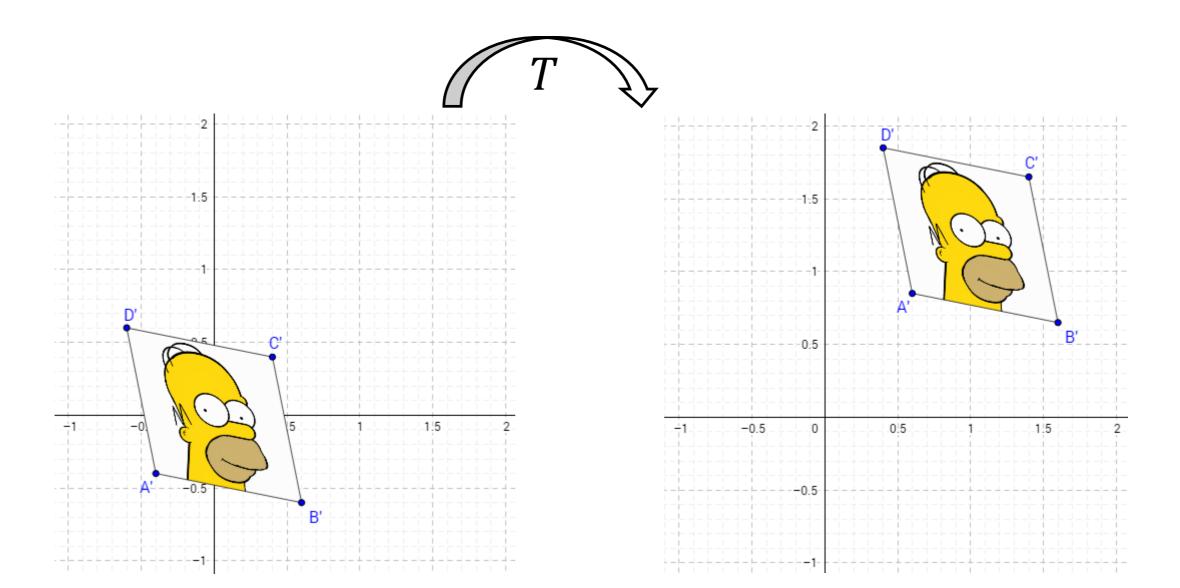
Scale along a particular axis

 $M = RSR^{-1}T^{-1}$



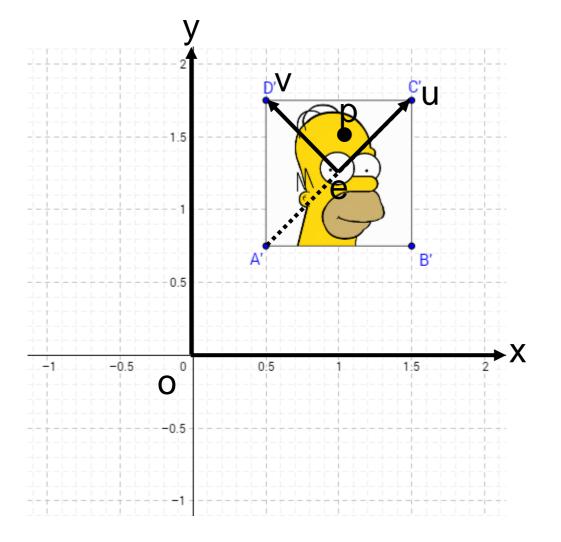
Scale along a particular axis

$$M = TRSR^{-1}T^{-1}$$



Finally

General case



$$\boldsymbol{p} = (x_p, y_p) = \boldsymbol{o} + x_p \boldsymbol{x} + y_p \boldsymbol{y}$$
$$\boldsymbol{p} = (u_p, v_p) = \boldsymbol{e} + u_p \boldsymbol{u} + v_p \boldsymbol{v}$$

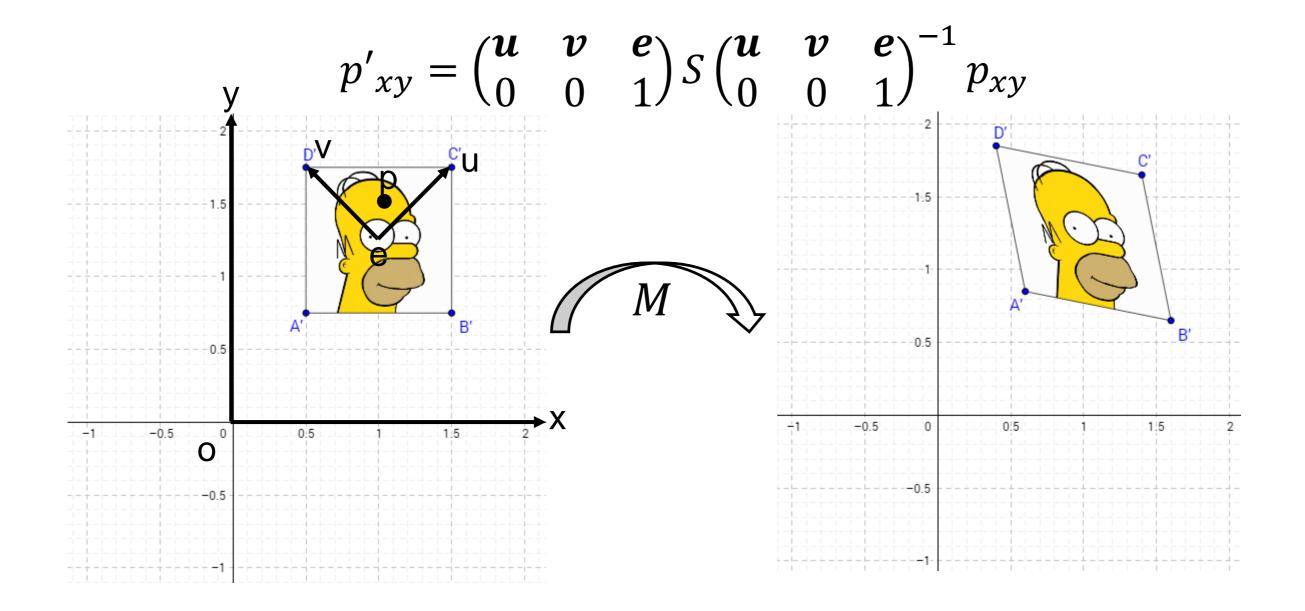
$$\boldsymbol{o} + x_p \boldsymbol{x} + y_p \boldsymbol{y} = \boldsymbol{e} + u_p \boldsymbol{u} + v_p \boldsymbol{v}$$

• Assuming x and y are canonical

$$\begin{pmatrix} x_p \\ y_p \\ 1 \end{pmatrix} = \begin{pmatrix} x_u & x_v & x_e \\ y_u & y_v & y_e \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} u_p \\ v_p \\ 1 \end{pmatrix}$$
$$p_{xy} = \begin{pmatrix} u & v & e \\ 0 & 0 & 1 \end{pmatrix} p_{uv}$$
$$p_{uv} = \begin{pmatrix} u & v & e \\ 0 & 0 & 1 \end{pmatrix}^{-1} p_{xy}$$

General case

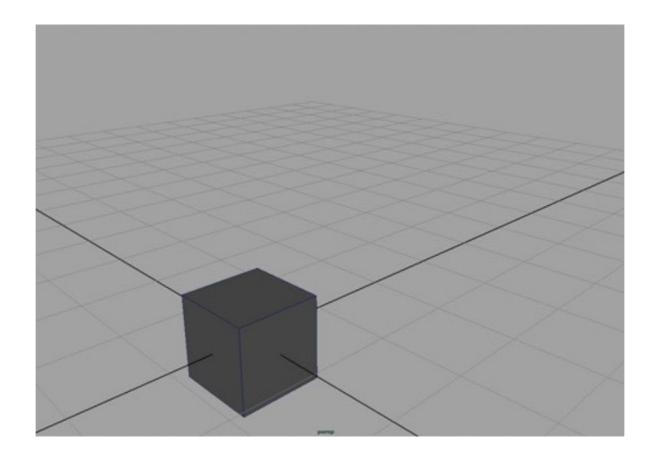
 $M = TRSR^{-1}T^{-1}$



3D Affine transformations

Translation

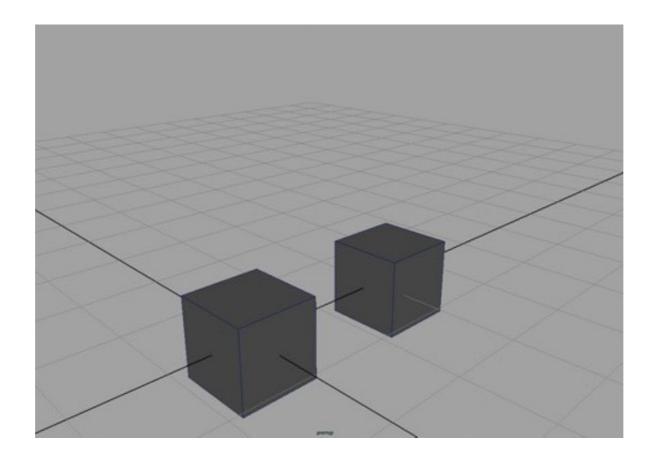
$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$



Slide credits: S. Marschner

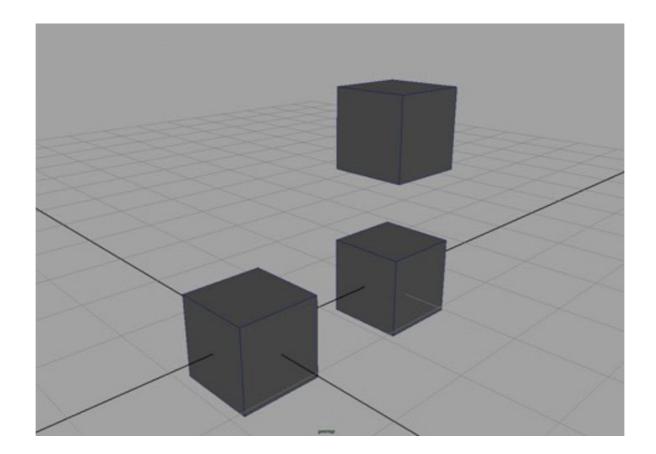
Translation

$$\begin{pmatrix} x'\\y'\\z'\\1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & t_x\\0 & 1 & 0 & t_y\\0 & 0 & 1 & t_z\\0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x\\y\\z\\1 \end{pmatrix}$$



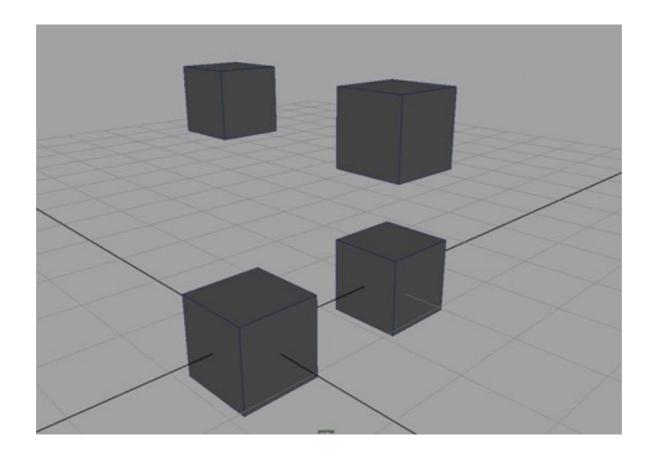
Translation

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$



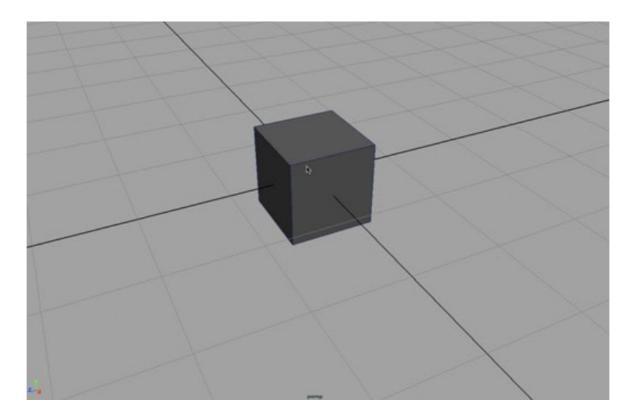
Translation

$$\begin{pmatrix} x'\\y'\\z'\\1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & t_x\\0 & 1 & 0 & t_y\\0 & 0 & 1 & t_z\\0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x\\y\\z\\1 \end{pmatrix}$$



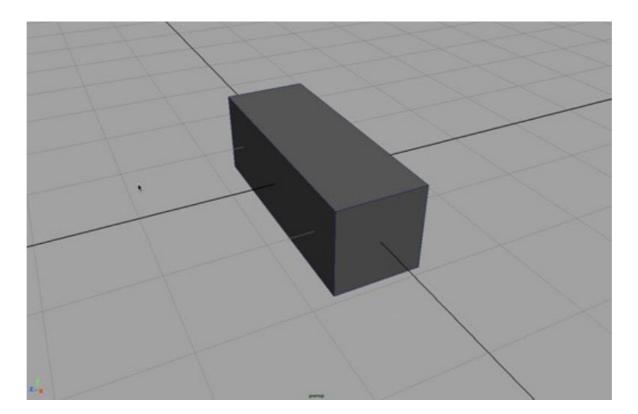
Scaling

$$\begin{pmatrix} x'\\y'\\z'\\1 \end{pmatrix} = \begin{pmatrix} s_x & 0 & 0 & 0\\0 & s_y & 0 & 0\\0 & 0 & s_z & 0\\0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x\\y\\z\\1 \end{pmatrix}$$



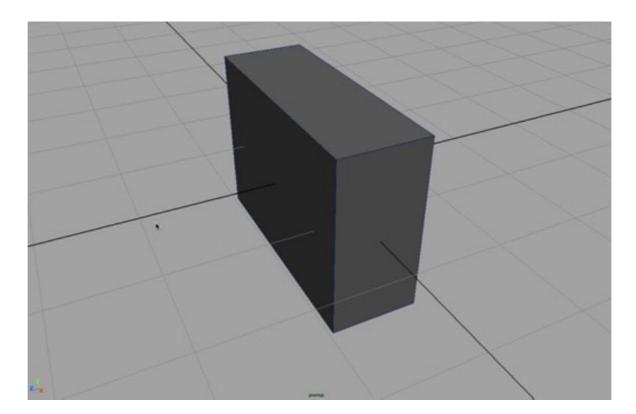
Scaling

$$\begin{pmatrix} x'\\y'\\z'\\1 \end{pmatrix} = \begin{pmatrix} s_x & 0 & 0 & 0\\0 & s_y & 0 & 0\\0 & 0 & s_z & 0\\0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x\\y\\z\\1 \end{pmatrix}$$



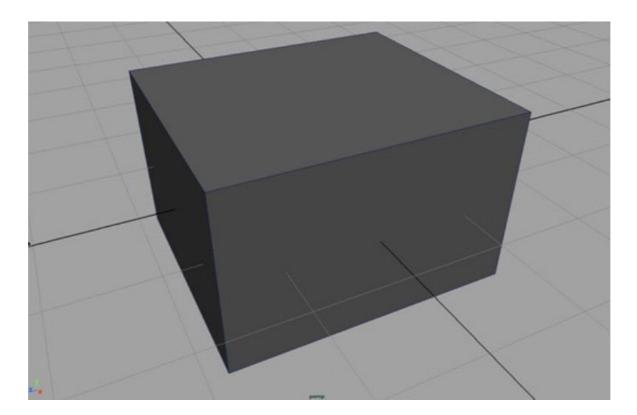
Scaling

$$\begin{pmatrix} x'\\y'\\z'\\1 \end{pmatrix} = \begin{pmatrix} s_x & 0 & 0 & 0\\0 & s_y & 0 & 0\\0 & 0 & s_z & 0\\0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x\\y\\z\\1 \end{pmatrix}$$

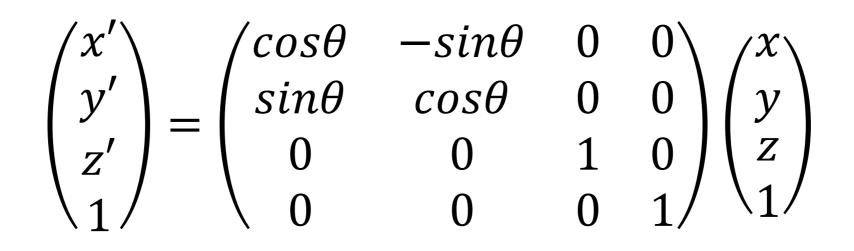


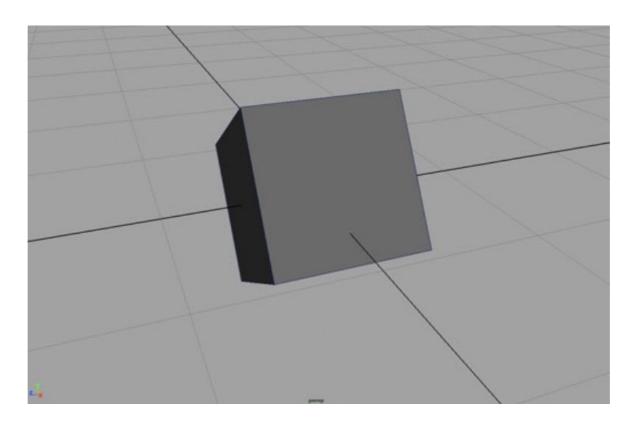
Scaling

$$\begin{pmatrix} x'\\y'\\z'\\1 \end{pmatrix} = \begin{pmatrix} s_x & 0 & 0 & 0\\0 & s_y & 0 & 0\\0 & 0 & s_z & 0\\0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x\\y\\z\\1 \end{pmatrix}$$



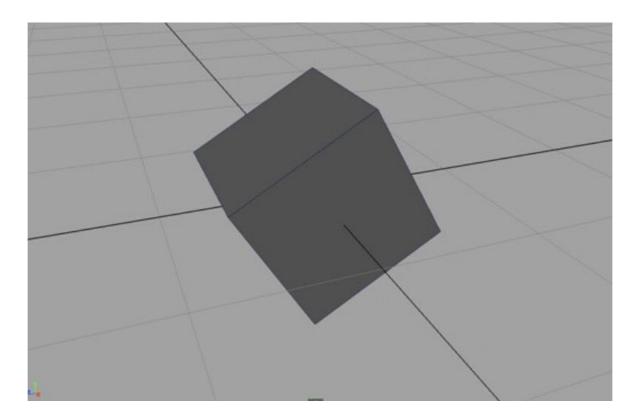
Rotation around z axis



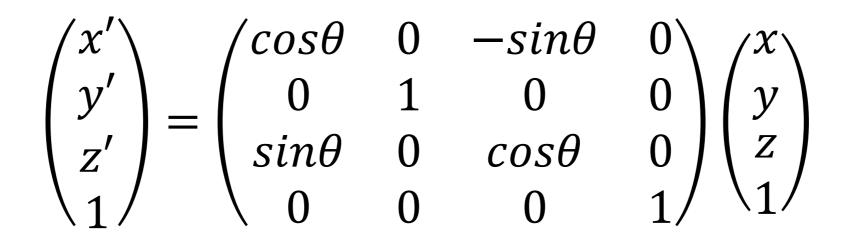


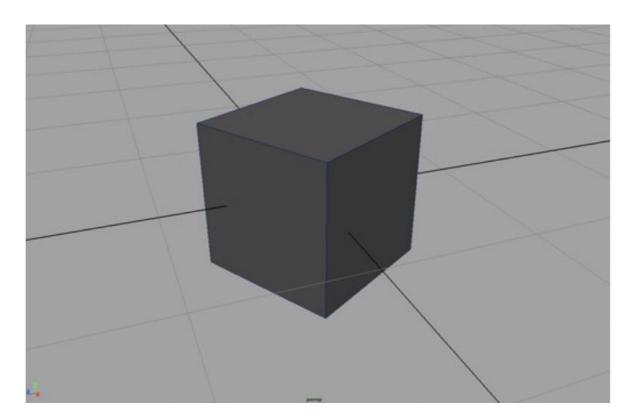
Rotation around x axis

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$



Rotation around y axis





Summary

- Transformations: translation, rotation, scaling and shearing
- Using homogeneous transformation, 2D (3D) transformations can be represented by multiplication of a 3x3 (4x4) matrix
- Change of coordinates
- 3D transformations

Reading

B1: Chapter 6