Image Processing 1

Hakan Bilen University of Edinburgh

Computer Graphics Fall 2017

This week

- What is an image?
- What is a digital image?
- Image processing
 - Point operations
 - Linear operations (anti-aliasing)
 - Fourier transformation
 - Global optimization (data-driven) based methods

What is an image?

An image as a function, *I* from R^2 to *R*

- $I(x, y): \mathbb{R}^2 \to \mathbb{R}$ outputs grayscale value at position (x, y)
- In practice $I(x, y): S \to V$

 $S = [a, b] \times [c, d]$ and V = [0, 1] (0->black, 1->white)

A color image I(x, y) is a vector-valued function (e.g. RGB)

$$I(x,y) = \begin{pmatrix} r(x,y) \\ g(x,y) \\ b(x,y) \end{pmatrix}$$

What is a digital image?

Why am I not photogenic ©

In computer graphics and vision, we typically use discrete images

- Sample the spatial space M rows, N columns Resolution = $M \times N$
- Quantize each sample $L_{min} < f(x, y) < L_{max}$ $[L_{min}, L_{max}] \rightarrow [0, L - 1]$
- C-channel image storage size $L = 2^b$ $S = M \times N \times C \times b$

 $\frac{a}{b}$ c d e

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

Image Sampling & Quantization

R. C. Gonzales & R. E. Woods

Problem: Real world is high dynamic range

- I(x, y)~illumination(x, y) × reflectance (x, y)
- $0 < \text{illumination}(x, y) < \inf$
- 0 < reflectance(x, y) < 1

1

1,500

25,000

400,000

2,000,000

Short Exposure

Slide credits: Alyosha Efros

Long Exposure

Slide credits: Alyosha Efros

Image credits: shutterbug.com

Quantization I

a b c d

FIGURE 2.21 (a) 452 × 374, 256-level image. (b)–(d) Image displayed in 128, 64, and 32 gray levels, while keeping the spatial resolution constant.

Quantization II

e f g h

FIGURE 2.21

(*Continued*) (e)–(h) Image displayed in 16, 8, 4, and 2 gray levels. (Original courtesy of Dr. David P. Dickege R. Pickens, Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center.)

What is image processing?

How can I look better in photos?

Definition: to preprocess the image and convert it into a form suitable for further analysis (Szelisky)

read an image, process it and write the result

>>convert chinese_chess.jpg contrast chinese_contrast.png

Image credit: imagemagick.org

Image Processing Operations

Point processing

- Brightness
- Contrast
- Gamma
- Histogram eq.
- Black & white
- Saturation
- White balance
- Global optimization strategies
 - Model based
 - Deep learning

Filtering

- Linear
 - Blurring
 - Sharpening
 - Edge detection
- Non-linear Filtering
 - Median Filtering
 - Bilateral Filtering
- Fourier transform

Point Processing

Log

$$s = c \cdot log(1+r)$$

Log

a b

FIGURE 3.5 (a) Fourier spectrum. (b) Result of applying the log transformation given in Eq. (3.2-2) with c = 1.

Point Processing

Power-law transformations

FIGURE 3.6 Plots of the equation $s = cr^{\gamma}$ for various values of γ (c = 1 in all cases).

Q: What does high and low γ do?

Point Processing

Negative

a b

FIGURE 3.4 (a) Original digital mammogram. (b) Negative image obtained using the negative transformation in Eq. (3.2-1). (Courtesy of G.E. Medical Systems.)

Contrast Stretching

a b c d FIGURE 3.10 Contrast stretching. (a) Form of transformation function. (b) A low-contrast image. (c) Result of contrast stretching. (d) Result of thresholding. (Original image courtesy of Dr. Roger Heady, Research School of Biological Sciences, Australian National University, Canberra, Australia.)

Image Histograms

a b

FIGURE 3.15 Four basic image types: dark, light, low contrast, high contrast, and their corresponding histograms. (Original image courtesy of Dr. Roger Heady, Research School of Biological Sciences, Australian National University, Canberra, Australia.)

Histogram Equalization

abc

FIGURE 3.17 (a) Images from Fig. 3.15. (b) Results of histogram equalization. (c) Corresponding histograms.

Color Transfer [Reinhard, et al, 2001]

Erik Reinhard, Michael Ashikhmin, Bruce Gooch, Peter Shirley, <u>Color Transfer between</u> <u>Images</u>. *IEEE Computer Graphics and Applications*, 21(5), pp. 34–41. September 2001.

Limitations of Point Processing

Q: What happens if I reshuffle all pixels within the image?

A: It's histogram won't change. No point processing will be affected... They don't know about their neighbors, edges, textures, etc.

What Point Operations Can't Do

Blurring / Smoothing

Slide credits: Tom Fletcher

What Point Operations Can't Do

Sharpening

Slide credits: Tom Fletcher

1D Example: Audio

Sampled representations

How to store and compute with continuous functions?

Common scheme for representation: samples

write down the function's values at many points

Sampling

Sampling in digital audio

Recording: sound to analog to samples to disc

Playback: disc to samples to analog to sound again

- how can we be sure we are filling in the gaps correctly?
- Problem 1: undersampling artifact
- Problem 2: reconstruction artifact

Sampling and Reconstruction

Simple example: a sign wave

Undersampling

What if we "missed" things between the samples?

Simple example: undersampling a sine wave

unsurprising result: information is lost

Undersampling

What if we "missed" things between the samples?

Simple example: undersampling a sine wave

- unsurprising result: information is lost
- surprising result: indistinguishable from lower frequency

Undersampling

What if we "missed" things between the samples?

Simple example: undersampling a sine wave

- unsurprising result: information is lost
- surprising result: indistinguishable from lower frequency
- also, was always indistinguishable from higher frequencies
- <u>aliasing</u>: signals "traveling in disguise" as other frequencies

Aliasing in video

https://www.youtube.com/watch?v=ByTsISFXUoY

Aliasing in video

Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what's happening.

If camera shutter is only open for a fraction of a frame time (frame time = 1/30 sec. for video, 1/24 sec. for film):

Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)

More aliasing examples

Antialiasing

What can we do about aliasing?

Sample more often

- Join the Mega-Pixel craze of the photo industry
- But this can't go on forever

Make the signal less "wiggly"

- Get rid of some high frequencies
- Will loose information
- But it's better than aliasing
Preventing aliasing

Introduce lowpass filters:

- remove high frequencies leaving only safe, low frequencies
- choose lowest frequency in reconstruction (disambiguate)

© 2006 Steve Marschner

Linear filtering: a key idea

Transformations on signals; e.g.:

- bass/treble controls on stereo
- blurring/sharpening operations in image editing
- smoothing/noise reduction in tracking

Key properties

- Inearity: $filter(\alpha f + g) = \alpha filter(f) + filter(g)$
- shift invariance: behavior invariant to shifting the input
 - delaying an audio signal
 - sliding an image around

Can be modeled mathematically by convolution

Moving Average

basic idea: define a new function by averaging over a sliding window a simple example to start off: smoothing

Moving Average

Can add weights to our moving average

Weights [..., 0, 1, 1, 1, 1, 1, 0, ...] / 5

© 2006 Steve Marschner

Cross-correlation

Let F be the image, H be the kernel of size $(2k + 1) \times (2k + 1)$, and G be the output image

$$G(x,y) = \sum_{u=-k}^{u=k} \sum_{v=-k}^{v=k} H(u,v)F(x+u,y+v)$$

This is called a cross-correlation operation:

 $G = H \otimes F$

Can think of as a "dot product" between local neighborhood and kernel for each pixel

In 2D: box filter

Slide credit: David Lowe (UBC)

 $h(\cdot,\cdot)$

1 9	1	1	1
	1	1	1
	1	1	1

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

 $g(u,v) = \sum h(x,y) f(u+x,v+y)$ x, y

1 9	1	1	1
	1	1	1
	1	1	1

0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	90	90	90	90	90	0	0	
0	0	90	90	90	90	90	0	0	
0	0	90	90	90	90	90	0	0	
0	0	90	0	90	90	90	0	0	
0	0	90	90	90	90	90	0	0	
0	0	0	0	0	0	0	0	0	
0	90	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	

0	10				

 $g(u,v) = \sum h(x,y) f(u+x,v+y)$ x, y

 $h(\cdot,\cdot) = \frac{1}{2}$

1 9	1	1	1
	1	1	1
	1	1	1

0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	0	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	90	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	

 $g(u,v) = \sum h(x,y) f(u+x,v+y)$ x, y

 $\left(\right)$

 \mathbf{O}

 $h(\cdot,\cdot)$

1	1	1	1
1 9	1	1	1
	1	1	1

 $g(\cdot, \cdot)$

 $g(u,v) = \sum h(x,y) f(u+x,v+y)$ *x*,*y*

 $\left(\right)$

 $h(\cdot,\cdot)$

1	1	1	1
1 9	1	1	1
	1	1	1

0	10	20	30	30		

 $g(u,v) = \sum h(x, y) f(u+x, v+y)$ *x*,*y*

 $h(\cdot,\cdot)$

1	1	1	1
1 9	1	1	1
	1	1	1

0	10	20	30	30		
			?			

$$g(u,v) = \sum_{x,y} h(x,y) f(u+x,v+y)$$

 $h(\cdot,\cdot)$

1	1	1	1
- -	1	1	1
9	1	1	1

0	10	20	30	30			
					?		
			50				

g(u,v) =	$\sum h(x, y) f(u + x, v + y)$
	x, y

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Box Filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)

Linear filters: examples

Original

Blur (with a mean filter)

Original

Source: D. Lowe

?

Original

Filtered (no change)

Original

?

Original

Shifted left By 1 pixel

1	0	-1
2	0	-2
1	0	-1

Sobel

Vertical Edge (absolute value)

1	2	1
0	0	0
-1	-2	-1

Sobel

Horizontal Edge (absolute value)

Back to the box filter

Moving Average

Can add weights to our moving average *Weights* [..., 0, 1, 1, 1, 1, 0, ...] / 5

Weighted Moving Average

bell curve (gaussian-like) weights [..., 1, 4, 6, 4, 1, ...]

© 2006 Steve Marschner

Moving Average In 2D

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

H(x, y)

F(u, v)

© 2006 Steve Marschner Slide by Steve Seitz

Moving Average In 2D

_									
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

1	1	2	1
	2	4	2
16	1	2	1

H(x, y)

$$h(i,j) = \frac{1}{2\pi\sigma^2} \left(-\frac{(x^2 + y^2)}{2\sigma^2}\right)$$

Mean vs. Gaussian filtering

Slide by Steve Seitz

Important filter: Gaussian

Weight contributions of neighboring pixels by nearness

0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013
0.003	0.013	0.022	0.013	0.003

5 x 5, $\sigma = 1$

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)^2}{2\sigma^2}}$$

Slide credit: Christopher Rasmussen

Gaussian Kernel

•Standard deviation σ : determines extent of smoothing

Source: K. Grauman

Gaussian filters

Choosing kernel width

•The Gaussian function has infinite support, but discrete filters use finite kernels

Practical matters

How big should the filter be?

Values at edges should be near zero

Rule of thumb for Gaussian: set filter half-width to about 3 σ

Side by Derek Hoiem

Image half-sizing

This image is too big to fit on the screen. How can we reduce it?

How to generate a halfsized version?

Image sub-sampling

1/2

Throw away every other row and column to create a 1/2 size image

- called image sub-sampling

Image sub-sampling

Aliasing! What do we do?
Sampling an image

Examples of GOOD sampling

Undersampling

Examples of BAD sampling -> Aliasing

Gaussian (lowpass) pre-filtering

G 1/8

G 1/4

Gaussian 1/2

Solution: filter the image, then subsample

• Filter size should double for each ½ size reduction. Why?

Subsampling with Gaussian filtering

Gaussian 1/2

G 1/4

G 1/8

Compare with...

1/2

1/4 (2x zoom)

1/8 (4x zoom)

Slide by Steve Seitz

Gaussian (lowpass) pre-filtering

G 1/8

G 1/4

Gaussian 1/2

Solution: filter the image, then subsample

- Filter size should double for each ½ size reduction. Why?
- How can we speed this up?

Slide by Steve Seitz

Multi-resolution Representations

Image Pyramids

Idea: Represent NxN image as a "pyramid" of 1x1, 2x2, 4x4,..., 2^kx2^k images (assuming N=2^k)

Known as a Gaussian Pyramid [Burt and Adelson, 1983]

- In computer graphics, a *mip map* [Williams, 1983]
- A precursor to wavelet transform

512 256 128 64 32 16 8

A bar in the big images is a hair on the zebra's nose; in smaller images, a stripe; in the smallest, the animal's nose

Figure from David Forsyth

Gaussian pyramid construction

Repeat

- Filter
- Subsample

Until minimum resolution reached

• can specify desired number of levels (e.g., 3-level pyramid)

The whole pyramid is only 4/3 the size of the original image!

Slide by Steve Seitz

What are they good for?

"Biological visual systems also operate on a hierarchy of scales" (Marr 1982)

Improve Search

- Search over translations
 - Classic coarse-to-fine strategy
- Search over scale
 - Template matching
 - E.g. find a face at different scales

Notes

- B1 (Marschner & Shirley) Chapter 3.2 and 9.1-9.4
- Additional Reading: Chapter 2.3-2.4 and 3, Digital Image Processing, Gonzalez & Woods
- Additional Reading: Point transformations: <u>http://homepages.inf.ed.ac.uk/rbf/HIPR2/pntops.htm</u>
- Additional Reading: Chapter 3.1-3.2 http://szeliski.org/Book/drafts/SzeliskiBook_20100903_draft.pdf