Image Processing 1

Hakan Bilen
University of Edinburgh

Computer Graphics
Fall 2017



This week

 What Is an image?

« What is a digital image?

* |Image processing
Point operations
Linear operations (anti-aliasing)
Fourier transformation
Global optimization (data-driven) based methods



What Is an image?

light {}

source

An image as a function, I from R? to R
I(x,y): R* > R outputs grayscale value at position (x,y)
In practice I(x,y):S -V
S =la,b] X |c,d] and V = [0,1] (0O->black, 1->white)

A color image I(x, y) is a vector-valued function (e.g. RGB)
r(x,y)
I(x,y) = 9(x,¥)
b(x,y)



What Is a digital image?
Why am | not photogenic ©

In computer graphics and vision, we typically use discrete images

« Sample the spatial space
HMumination (energy)

M rows, N columns '7/l\ E

Resolution = M X N i

(Internal) image plane

* Quantize each sample
Lmin < f(x: Y) < Lmax

[Lmin» Lmax] - [O» L — 1]

Output (digitized) image

Imaging system

Scene element

gcde

. _ . .
C Channel Image Storage Slze FIGURE 2.15 Ancxample of the digital image acquisition process. (a) Energy (“illumination™) source. (b) An ¢l-

L 2 b ement of a scene. (¢) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.
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R. C. Gonzales & R. E. Woods



Image Sampling & Quantization
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FIGURE 2.16
Y \‘M Generating a

digital image.

I ‘1\% (a) Continuous

! image. (b) A scan
line from A to B
in the continuous
image, used to
illustrate the
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Problem: Real world Is high dynamic range

I(x, y)~illumination(x, y) X reflectance (x, y)

0 <illumination(x,y) < inf

0 < reflectance(x,y) < 1

400,000 2,000,000

Image credit: Paul Debevec



Short Exposure

10° High dynamic range 10°

Real world | | | | | | | | | | | | |

Picture | | |

Slide credits: Alyosha Efros



Long Exposure

10° High dynamic range 10°
Real world | | | | | | | | | | | | |
106 106
Picture I R A IR AN SR A A N NN SR
]
0 to 255

Slide credits: Alyosha Efros
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Image credits: shutterbug.com



Quantization |

ab
cd

FIGURE 2.21

(a) 452 x 374,
256-level image.
(b)—(d) Image
displayed in 128,
64, and 32 gray
levels, while
keeping the

 spatial resolution

constant.
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FIGURE 2.21
(Continued)
(e)=(h) Image

displaved in 16, 8,

4,and 2 gray
levels. (Original
courtesy of

Dr. David

R. Pickens,
Department of
Radiology &
Radiological
Sciences,
Vanderbilt
University
Medical Center.)

Quantization Il




What Is image processing?
How can I look better in photos?

Definition: to preprocess the image and convert it into a form suitable for further
analysis (Szelisky)

read an image, process it and write the result

>>convert chinese chess.jpg -
contrast chinese contrast.png

Image credit: imagemagick.org



Image Processing Operations

Point processing Filtering
Brightness Linear
Contrast Blurring
Gamma Sharpening
Histogram eq. Edge detection
Black & white Non-linear Filtering
Saturation Median Filtering
White balance Bilateral Filtering

Fourier transform
Global optimization strategies
Model based
Deep learning



FIGURE 3.3 Some
basic gray-level
transformation
functions used for
image
enhancement.

Point Processing

Log

s=c-log(l1+r)

I —1
Negative
nth root

3L/4 -
) Log
]
2 nth power
=
I'E.I'_l L:’.‘E —
S

.L.'q'
Identity Inverse log

0 L/4 L2 3L /4
Input gray level, r
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FIGURE 3.5

(a) Fourier
spectrum.

(b} Result of
applving the log
transformation
given in

Eq. (3.2-2) with
c = 1.

Helo




Point Processing

Power-law transformations

s =crY

L—1 ___
= 0.04
v = (.10
3L /4 v = 0.20 =
. v = 0.40
g = 0.67
S L2 _ -
=
;5'::“ =15
p—
=25
LA =50 N
v =100
/ vl
0 | | | J
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[nput gray level. r

FIGURE 3.6 Plots
of the equation

s = cr’ for
various values of
v(c = 1inall
CASCs ).

Q: What does high and low y do?



Point Processing




Negative

a b

FIGURE 3.4

(a) Original
digital
mammaogram.

(b) Negative
image obtained
using the negative
transformation in
Eq. (3.2-1).
(Courtesy of G.E.
Medical Systems.)



Ouput gray level. s

Contrast Stretching
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FIGURE 3.10
Contrast
stretching.

(a) Form of
transformation
function. (b) A
low-contrast
image. (¢) Result
of contrast
stretching.

(d) Result of
thresholding.
(Original image
courtesy of

Dr. Roger Heady.
Research School
of Biological
Sciences,
Australian
National
University,
(Canberra,
Austraha.)



Image Histograms

Dark image 1.00

..||||.|;|..... . .

Bright image

T T 0.50

Lonw-contrast image

B HHM . 0 . 12|8 . l’Sl*Z
— Cumulative Histograms

High-contrast image
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FIGURE 3.15 Iour basic image types: dark, light, low contrast, high contrast, and their cor-
responding histograms. {Original image courtesy of Dr. Roger Heady, Research School
of Biological Sciences, Australian Mational University, Canberra, Australia. )




Histogram Equalization
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FIGURE 3.17 (a) Images from Fig. 3.15. (b) Results of histogram equalization. (c) Cor-
responding histograms



Color Transfer [Reinhard, et al, 2001]

Erik Reinhard, Michael Ashikhmin, Bruce Gooch, Peter Shirley, Color Transfer between
Images. IEEE Computer Graphics and Applications, 21(5), pp. 34-41. September 2001.



http://www.cs.bris.ac.uk/Publications/pub_master.jsp?id=2000476

Limitations of Point Processing

Q: What happens if | reshuffle all pixels within the image?

A: It's histogram won’t change. No point processing will be affected...

They don’t know about their neighbors, edges, textures, etc.

Slide credits: Alyosha Efros



What Point Operations Can’'t Do

Blurring / Smoothing

Slide credits: Tom Fletcher



What Point Operations Can’'t Do
Sharpening

Slide credits: Tom Fletcher



1D Example: Audio

low high
frequencies



Sampled representations

How to store and compute with continuous functions?

Common scheme for representation: samples
write down the function’s values at many points

l Sampling

[FVDFH fig.14.14b / Wolberg]

© 2006 Steve Marschner



Sampling in digital audio

Recording: sound to analog to samples to disc

Playback: disc to samples to analog to sound again
how can we be sure we are filling in the gaps correctly?

Problem 1: undersampling artifact
Problem 2: reconstruction artifact

AQ&UAUQQ[W‘L —>» |A/D conv.| —» L—Lﬂ-‘ﬂ_”"u”ﬁ”# —_— @

@ —_— ML'T‘J‘“_WH-‘J-‘THT”_L —>» | D/A conv.

— At )

© 2006 Steve Marschner



Sampling and Reconstruction

Simple example: a sigh wave

AWAWAWAWAWA
[VARVARVARVARVERV/

© 2006 Steve Marschner




Undersampling

What if we “missed” things between the samples?

Simple example: undersampling a sine wave
unsurprising result: information is lost

/\\/\\/%/\V/\\/\\/

© 2006 Steve Marschner




Undersampling

What if we “missed” things between the samples?

Simple example: undersampling a sine wave
unsurprising result: information is lost
surprising result: indistinguishable from lower frequency

© 2006 Steve Marschner



Undersampling

What if we “missed” things between the samples?

Simple example: undersampling a sine wave
unsurprising result: information is lost
surprising result: indistinguishable from lower frequency
also, was always indistinguishable from higher frequencies
aliasing: signals “traveling in disguise” as other frequencies

VAR SV V2R VARV VAR VAU VAR V

© 2006 Steve Marschner



Aliasing In video

https://www.youtube.com/watch?v=ByTsISFXUoY



https://www.youtube.com/watch?v=ByTsISFXUoY

Aliasing in video

Imagine a spoked wheel moving to the right (rotating clockwise).
Mark wheel with dot so we can see what’s happening.

[t camera shutter 1s only open for a fraction of a frame time (frame
time = 1/30 sec. for video, 1/24 sec. for film):

DODYRD

frame 0 frame 1 frame 2 frame 3 frame 4
I I H L,
shutter open time

Without dot, wheel appears to be rotating slowly backwards!
(counterclockwise)

Slide by Steve Seitz



More aliasing examples




Antialiasing

What can we do about aliasing?

Sample more often
Join the Mega-Pixel craze of the photo industry
But this can’'t go on forever

Make the signal less “wiggly”
Get rid of some high frequencies
Will loose information
But it's better than aliasing



Preventing aliasing

Introduce lowpass filters:

remove high frequencies leaving only safe, low frequencies
choose lowest frequency in reconstruction (disambiguate)

Iowpass filter

A/D conv.

|l || N1
@ LU L]

» [D/A conv.

|l Il AL
' T l” I|| — ”l |||

Iowpass filter

-@

—»I%va )

© 2006 Steve Marschner



Linear filtering: a key idea

Transformations on signals; e.g.:
bass/treble controls on stereo
blurring/sharpening operations in image editing
smoothing/noise reduction in tracking

Key properties
linearity: filter(af + g) = afilter(f) + filter(g)
shift invariance: behavior invariant to shifting the input
delaying an audio signal

sliding an image around

Can be modeled mathematically by convolution

© 2006 Steve Marschner



Moving Average

basic idea: define a new function by averaging over a sliding window

a simple example to start off: smoothing




Moving Average

Can add weights to our moving average
Weights [...,0,1,1,1,1,1,0,...] /5




Cross-correlation

Let F be the image, H be the kernel of size (2k + 1) X (2k + 1), and G be the output
Image

u=k v=k

G(x,y) = z z Hu,v)F(x +u,y + v)

u=—kv=-k

This is called a cross-correlation operation:

G = HYF

Can think of as a “dot product” between local neighborhood and kernel for each pixel



In 2D: box filter

1|11
1
— 111
9

1|11

Slide credit: David Lowe (UBC)



Image filtering NBEE
h(-,) s[[2

g(u,v)=> h(x,y) f(u+x,v+y)

Credit: S. Seitz



Image filtering ——
h(-,) é TEE

g(u,v)=> h(x,y) f(u+x,v+y)

Credit: S. Seitz



Image filtering ——

g(u,v)=> h(x,y) f(u+x,v+y)

Credit: S. Seitz



Image filtering ——

g(u,v)=> h(x,y) f(u+x,v+y)

Credit: S. Seitz



Image filtering ——
h(-,) é TEE

g(u,v)=> h(x,y) f(u+x,v+y)

Credit: S. Seitz



Image filtering

f (’)

()

()

20

30

30

g(u,v)=> h(x,y) f(u+x,v+y)

Credit: S. Seitz



Image filtering

f (’)
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g(u,v)=> h(x,y) f(u+x,v+y)

Credit: S. Seitz



Image filtering

=
=
=

O | =

Credit: S. Seitz



Box Filter

| h(. .
What does it do? ()
* Replaces each pixel with an 1101 |1
average of its neighborhood 1
— 1] 11
* Achieve smoothing effect 9 11| g
(remove sharp features)

Slide credit: David Lowe (UBC)



Linear filters: examples

Original Blur (with a mean
filter)

Source: D. Lowe



Practice with linear filters

o
=
o
®

Original

Source: D. Lowe



Practice with linear filters

o
=
o

Original Filtered
(no change)

Source: D. Lowe



Practice with linear filters

=
o
o
®

Original

Source: D. Lowe



Practice with linear filters

=
o
o

Original Shifted left
By 1 pixel

Source: D. Lowe



Vertical Edge
(absolute value)



-1

-2

-1

Sobel

Horizontal Edge
(absolute value)



Back to the box filter




Moving Average

Can add weights to our moving average
Weights [...,0,1,1,1,1,1,0,...] /5




Weighted Moving Average

bell curve (gaussian-like) weights [..., 1,4,6,4, 1, ...]

++-001464100---




Moving Average In 2D

0 | 0] o0 0 0 | 0
0o | o] o 0 0 | 0
0 0 0 90 | 90 | 90 | 90 | 90 0 0
0 0 0 90 | 90 | 90 | 90 | 90 0 0
0 | 0| 0|9 9] |9%]|[w]|o]o
0o | o] o0o]9%|o0o][%|%]|[w]|o]o
0 | 0| o0o|9 |9 ][%|9%]|[w]|o]o
o[ oo 0 0 | 0
0 0 90 0) 0 0
0 0 0 0 0
F(u,v)

H(x,y)

© 2006 Steve Marschner
Slide by Steve Seitz



Moving Average In 2D

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 90 | 90 | 90 | 90 | 90 0 0
0 0 0 90 | 90 | 90 | 90 | 90 0 0
0 0 0 90 | 90 | 90 | 90 | 90 0 0
0 0 0 90 0 90 | 90 | 90 0 0
0 0 0 90 | 90 | 90 | 90 | 90 0 0
0 0 0 0 0 0
0 0 90 0 0 0
0 0 0 0 0 0
h(i,j) =

1 4 2
16 2 1
H(x,y)

1 (x% 4+ y2)
270 % 2072

)

Slide Credit: S. Seitz ad Marschner



Mean vs. Gaussian filtering

Slide by Steve Seitz



Important filter: Gaussian

Weight contributions of neighboring pixels by nearness

0.003 0.013 0.022 0.013 0.003

0.013 0.059 0.097 0.059 0.013

0.022 0.097 0.159 0.097 0.022

0.013 0.059 0.097 0.059 0.013

0.003 0.013 0.022 0.013 0.003
5x5 0=1

Slide credit: Christopher Rasmussen



Gaussian Kernel

Standard deviation o: determines extent of smoothing

-3
100 e
e L - - S
AL A S R 5
0.01 oot 2 Jo it
0.l .
o =
30 : 30
30

5

o =2 with 30 x 30 0:5vz/it0h30x30
kernel kernel
1 (22 +y2)
(7 g = e D52

Source: K. Grauman



Gaussian filters

(J =1 pixel (0 =5 pixels (J =10 pixels () =30 pixels



Choosing kernel width

*The Gaussian function has infinite support, but discrete filters use finite kernels

= 85 8

L T T e

o T OWwWom g
=

0230 kernel

ith 3

G=59 Wi

th 10x10 kernal

G= D Wi

Source: K. Grauman



Practical matters

How big should the filter be?

Values at edges should be near zero

Rule of thumb for Gaussian: set filter half-width to about 3 o

Effect of o

0.4

035 -

0.3

0.25

02

015

0.1 F

0.0s -

0 II:I 12 14 16 15 20

Side by Derek Hoiem



Image half-sizing

This image Is too big to
fit on the screen. How
can we reduce It?

How to generate a half-
sized version?




Image sub-sampling

Throw away every other row and column to create a 1/2 size
Image

- called image sub-sampling
Slide by Steve Seitz



Image sub-sampling

1/ 4 (2;<~zoom) |

.1/8 (4>.< Zoom)
Aliasing! What do we do?

Slide by Steve Seitz



Sampling an image

Examples of GOOD sampling



Undersampling

Examples of BAD sampling -> Aliasing



Gaussian (lowpass) pre-filtering

Gaussian 1/2

Solution: filter the image, then subsample

* Filter size should double for each %2 size reduction. Why?
Slide by Steve Seitz



Subsampling with Gaussian filtering

Gaussian 1/2 G 1/8

Slide by Steve Seitz



Compare with...

1/2 1/4 (2x zoom) 1/8 (4x zoom)

Slide by Steve Seitz



Gaussian (lowpass) pre-filtering

Gaussian 1/2

Solution: filter the image, then subsample

* Filter size should double for each %2 size reduction. Why?
 How can we speed this up? Slide by Steve Seitz



Multi-resolution Representations

Image Pyramids

ldea: Represent NxN image as a "pyramid” of
1x1, 2x2, 4x4,..., 2¥x2% images (assuming N=2¥)

level k(= 1 pi};clq

T T N7
level k-2 / / / )( /
S oS SN S
A AV &
level 0 (= onginal image) / :

Known as a Gaussian Pyramid [Burt and Adelson, 1983]
* In computer graphics, a mip map [Williams, 1983]
A precursor to wavelet transform

Slide by Steve Seitz



A bar in the big

images 1s a hair

\\‘ on the zebra’s

_nose; in smaller

. 1mages, a

:} stripe; 1n the

| ‘ smallest, the
animal’s nose

Figure from David Forsyth



Gaussian pyramid construction

_>.

@ @ ? @ @ |

. filter mask
@ @ IT @ @ @ TI @ @

Repeat

 Filter
« Subsample

Until minimum resolution reached
» can specify desired number of levels (e.g., 3-level pyramid)

The whole pyramid is only 4/3 the size of the original image!

Slide by Steve Seitz



What are they good for?

“Biological visual systems also operate on a hierarchy of scales” (Marr 1982)

Improve Search
Search over translations
Classic coarse-to-fine strategy
Search over scale
Template matching
E.qg. find a face at different scales



Notes

B1 (Marschner & Shirley) Chapter 3.2 and 9.1-9.4

Additional Reading: Chapter 2.3-2.4 and 3, Digital Image Processing, Gonzalez &
Woods

Additional Reading: Point transformations:
http://homepages.inf.ed.ac.uk/rbf/HIPR2/pntops.htm

Additional Reading: Chapter 3.1-3.2
http://szeliski.org/Book/drafts/SzeliskiBook 20100903 draft.pdf



http://homepages.inf.ed.ac.uk/rbf/HIPR2/pntops.htm

