CFCS Tutorial: Entropy

Miles Osborne

March 21, 2008

Suppose you have a two-sided coin and a four-sided die. You throw the coin and die a number of times and record the following:

	1	2	3	4
h	1	1	2	2
t	2	4	8	2

(for example, you saw a head and a one once; you saw a tail and a three 8 times etc)

- Compute the full joint probability distribution: $P(C, D)$. Sol:

	1	2	3	4
h	$1 / 22$	$1 / 22$	$2 / 22$	$2 / 22$
t	$2 / 22$	$4 / 22$	$8 / 22$	$2 / 22$

- Now, compute the probability for the coin and the probability for the die: $P(C)$ and $P(D)$. Sol: $\mathrm{P}(\mathrm{C}): \mathrm{C}=\mathrm{h}=6 / 22 ; \mathrm{C}=\mathrm{t}=16 / 22 ; \mathrm{P}(\mathrm{D}): \mathrm{D}=1=$ $3 / 22 \mathrm{D}=2=5 / 22 ; \mathrm{D}=3=10 / 22 \mathrm{D}=4=4 / 22$
- What is the entropy of C ? Sol: 0.84
- What is the entropy of D ? Sol: 1.84
- What is the entropy of C, D ? Sol: 2.6 Is it higher or lower than the two previous entropies? Higher
- Now compute $H(C \mid D)$. Also compute $H(D \mid C)$. Comment on these values, compared to each other and to the joint entropy. Sol: use the fact that $H(X \mid Y)=H(X, Y)-H(Y)$ to work out the actual values; as expected, the conditional entropy is lower than the joint; knowing the coin does not really reduce the choices by much, so the entropy is higher than the case when we know the die value first.

