Computational Foundations of Cognitive Science 1 (2009–2010)

School of Informatics, University of Edinburgh Lecturers: Frank Keller, Miles Osborne

Solution for Tutorial 8: Joint Distributions; Expectation and Variance

Week 9 (08-12 March, 2010)

1. Joint and Marginal Distributions

Two psychometric tests are administered to a group of 10 experimental subjects. The first test is a standardized aptitude test used for university admissions. It returns a score between 0 and 100. Let X be the random variable denoting the aptitude test score. The second psychometric test is a memory test. It measures the digit span, i.e., the number of digits in a sequence that a subject is able to remember before they make a mistake. Let Y be the random variable that denotes the digit span, ranging from 1 to 5. The results of the experiment are given in the following table:

Subject	1	2	3	4	5	6	7	8	9	10
x	60	50	40	50	60	30	30	20	30	50
у	5	3	3	3	3	3	3	4	4	4

- (a) Compute the distributions of *X* and *Y*.
- (b) Compute the joint distribution of *X* and *Y*.
- (c) Compute the marginal distributions of *X* and *Y*.
- (d) Are *X* and *Y* independent?
- (e) Compute the conditional distributions of *X* given Y = 3.

Solution:

a)										
•)	x	20	30	40	50	60	-			
	f(x)	0.1	0.3	0.1	0.3	0.2				
	у	3	4	5			-			
	f(y)	0.6	0.3	0.1						
	-						-			
	(x,y)	20	30	40	50	60				
	3	0	0.2	0.1	0.2	0.1	_			
	4	0.1	0.1	0	0.1	0				
	5	0	0	0	0	0.1				
)							_		_	
	(x, y))	20	30	40	50	60	$\sum_{x} f(x,y)$	_	
	3		0	0.2	0.1	0.2	0.1	0.6		
	4		0.1	0.1	0	0.1	0	0.3		
	5		0	0	0	0	0.1	0.1		
	$\sum_{y} f(x)$	<i>z</i> , <i>y</i>)	0.1	0.3	0.1	0.3	0.2		-	
)	No, for	exan	nple f	(40, 3)) = 0.1	l, but	$\sum_{y} f($	$(40,y)\cdot\sum_{x}f($	(x,3) = 0	1.0.6
;)		1								
·	x	20	30	40	50	60)			
	y = 3	0	0.67	/ 1	0.6	7 0.	5			

2. Expectation and Variance

(a) For the discrete random variable *X* with the following probability distribution:

$$f(x) = \frac{|x-2|}{7}$$
 for $x = -1, 0, 1, 2, 3$

determine E(X) and var(X). Now assume the functions g(X) = 3X + 2 and $h(X) = X^2$ and determine E(g(X)) and E(h(X)).

Solution:

$$E(X) = \sum_{x} x \cdot f(x) = -1\frac{3}{7} + 0\frac{2}{7} + 1\frac{1}{7} + 2\frac{0}{7} + 3\frac{1}{7} = \frac{1}{7}$$

$$\operatorname{var}(X) = \sum_{x} (x-\mu)^2 \cdot f(x) = (-1-\frac{1}{7})^2 \frac{3}{7} + (0-\frac{1}{7})^2 \frac{2}{7} + (1-\frac{1}{7})^2 \frac{1}{7} + (2-\frac{1}{7})^2 \frac{0}{7} + (3-\frac{1}{7})^2 \frac{1}{7}$$
$$E(g(X)) = \sum_{x} 3x + 2 \cdot f(x) = -1\frac{3}{7} + 2\frac{2}{7} + 5\frac{1}{7} + 8\frac{0}{7} + 11\frac{1}{7} = \frac{16}{7}$$
$$E(h(X)) = \sum_{x} x^2 \cdot f(x) = (-1)^2 \frac{3}{7} + 0^2 \frac{2}{7} + 1^2 \frac{1}{7} + 2^2 \frac{0}{7} + 3^2 \frac{1}{7} = \frac{13}{7}$$

(b) In Chebyshev's theorem, which form does the inequality take for k = 1, 2, 3, 4? Solution: The general form of Chebyshev's theorem is:

$$P(|x-\mu| < k\sigma) \ge 1 - \frac{1}{k^2}$$

So we get for k = 1, 2, 3, 4:

$$P(|x-\mu| < \sigma) \ge 0$$
$$P(|x-\mu| < 2\sigma) \ge \frac{3}{4}$$
$$P(|x-\mu| < 3\sigma) \ge \frac{8}{9}$$
$$P(|x-\mu| < 4\sigma) \ge \frac{15}{16}$$

3. Covariance

The *covariance* of two random variables *X* and *Y* with the joint distribution f(x, y) is defined as:

$$\operatorname{cov}(X,Y) = E((X - \mu_X)(Y - \mu_Y)) = \sum_{x} \sum_{y} (x - \mu_X)(y - \mu_Y) \cdot f(x,y)$$

where μ_X and μ_Y are the means of *X* and *Y*.

Assume that *X* and *Y* have the following joint distribution:

(x,y)	0	1	2
0	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{12}$
1	$\frac{2}{9}$	$\frac{1}{6}$	0
2	$\frac{1}{36}$	Ő	0

(a) Compute the marginal distributions of *X* and *Y*.

(b) Use the marginal distributions to compute μ_X and μ_Y .

(c) Now compute the covariance of *X* and *Y*.

Solution:

(a) The marginal distributions are:

(x,y)	0	1	2	
0	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{12}$	$\frac{7}{12}$
1	$\frac{2}{9}$	$\frac{1}{6}$	0	$\frac{7}{18}$
2	$\frac{1}{36}$	0	0	$\frac{1}{36}$
	$\frac{5}{12}$	$\frac{1}{2}$	$\frac{1}{12}$	

1	1. \
	n١
•	$\boldsymbol{\upsilon}$

$$\mu_X = 0\frac{5}{12} + 1\frac{1}{2} + 2\frac{1}{12} = \frac{2}{3}$$
$$\mu_Y = 0\frac{7}{12} + 1\frac{7}{18} + 2\frac{1}{36} = \frac{4}{9}$$

(c)

$$\operatorname{cov}(X,Y) = \sum_{x} \sum_{y} (x - \frac{2}{3})(y - \frac{4}{9}) \cdot f(x,y) = -\frac{7}{54}$$