Computational Foundations of Cognitive Science 1 (2009-2010)

School of Informatics, University of Edinburgh
Lecturers: Frank Keller, Miles Osborne

Solution for Tutorial 8: Joint Distributions; Expectation and Variance

Week 9 (08-12 March, 2010)

1. Joint and Marginal Distributions

Two psychometric tests are administered to a group of 10 experimental subjects. The first test is a standardized aptitude test used for university admissions. It returns a score between 0 and 100. Let X be the random variable denoting the aptitude test score. The second psychometric test is a memory test. It measures the digit span, i.e., the number of digits in a sequence that a subject is able to remember before they make a mistake. Let Y be the random variable that denotes the digit span, ranging from 1 to 5 . The results of the experiment are given in the following table:

Subject	1	2	3	4	5	6	7	8	9	10
x	60	50	40	50	60	30	30	20	30	50
y	5	3	3	3	3	3	3	4	4	4

(a) Compute the distributions of X and Y.
(b) Compute the joint distribution of X and Y.
(c) Compute the marginal distributions of X and Y.
(d) Are X and Y independent?
(e) Compute the conditional distributions of X given $Y=3$.

Solution:

(a)

$f(x)$	0.1	0.3	0.1	0.3	0.2
y	3	4	5		

$f(y)$	0.6	0.3	0.1

(b)

(x, y)	20	30	40	50	60
3	0	0.2	0.1	0.2	0.1
4	0.1	0.1	0	0.1	0
5	0	0	0	0	0.1

(c)

(x, y)	20	30	40	50	60	$\sum_{x} f(x, y)$
3	0	0.2	0.1	0.2	0.1	0.6
4	0.1	0.1	0	0.1	0	0.3
5	0	0	0	0	0.1	0.1
$\sum_{y} f(x, y)$	0.1	0.3	0.1	0.3	0.2	

(d) No, for example $f(40,3)=0.1$, but $\sum_{y} f(40, y) \cdot \sum_{x} f(x, 3)=0.1 \cdot 0.6=0.06$
(e)

x	20	30	40	50	60
$y=3$	0	0.67	1	0.67	0.5

2. Expectation and Variance

(a) For the discrete random variable X with the following probability distribution:

$$
f(x)=\frac{|x-2|}{7} \text { for } x=-1,0,1,2,3
$$

determine $E(X)$ and $\operatorname{var}(X)$. Now assume the functions $g(X)=3 X+2$ and $h(X)=X^{2}$ and determine $E(g(X))$ and $E(h(X))$.

$$
\begin{aligned}
& \text { Solution: } \\
& \qquad \begin{array}{c}
E(X)=\sum_{x} x \cdot f(x)=-1 \frac{3}{7}+0 \frac{2}{7}+1 \frac{1}{7}+2 \frac{0}{7}+3 \frac{1}{7}=\frac{1}{7} \\
\operatorname{var}(X)=\sum_{x}(x-\mu)^{2} \cdot f(x)=\left(-1-\frac{1}{7}\right)^{2} \frac{3}{7}+\left(0-\frac{1}{7}\right)^{2} \frac{2}{7}+\left(1-\frac{1}{7}\right)^{2} \frac{1}{7}+\left(2-\frac{1}{7}\right)^{2} \frac{0}{7}+\left(3-\frac{1}{7}\right)^{2} \frac{1}{7} \\
E(g(X))=\sum_{x} 3 x+2 \cdot f(x)=-1 \frac{3}{7}+2 \frac{2}{7}+5 \frac{1}{7}+8 \frac{0}{7}+11 \frac{1}{7}=\frac{16}{7} \\
E(h(X))=\sum_{x} x^{2} \cdot f(x)=(-1)^{2} \frac{3}{7}+0^{2} \frac{2}{7}+1^{2} \frac{1}{7}+2^{2} \frac{0}{7}+3^{2} \frac{1}{7}=\frac{13}{7}
\end{array}
\end{aligned}
$$

(b) In Chebyshev's theorem, which form does the inequality take for $k=1,2,3,4$?

Solution: The general form of Chebyshev's theorem is:

$$
P(|x-\mu|<k \sigma) \geq 1-\frac{1}{k^{2}}
$$

So we get for $k=1,2,3,4$:

$$
\begin{gathered}
P(|x-\mu|<\sigma) \geq 0 \\
P(|x-\mu|<2 \sigma) \geq \frac{3}{4} \\
P(|x-\mu|<3 \sigma) \geq \frac{8}{9} \\
P(|x-\mu|<4 \sigma) \geq \frac{15}{16}
\end{gathered}
$$

3. Covariance

The covariance of two random variables X and Y with the joint distribution $f(x, y)$ is defined as:

$$
\operatorname{cov}(X, Y)=E\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right)=\sum_{x} \sum_{y}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right) \cdot f(x, y)
$$

where μ_{X} and μ_{Y} are the means of X and Y.
Assume that X and Y have the following joint distribution:

(x, y)	0	1	2
0	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{12}$
1	$\frac{2}{9}$	$\frac{1}{6}$	0
2	$\frac{1}{36}$	0	0

(a) Compute the marginal distributions of X and Y.
(b) Use the marginal distributions to compute μ_{X} and μ_{Y}.
(c) Now compute the covariance of X and Y.

Solution:

(a) The marginal distributions are:

(x, y)	0	1	2	
0	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{12}$	$\frac{7}{12}$
1	$\frac{2}{9}$	$\frac{1}{6}$	0	$\frac{7}{18}$
2	$\frac{1}{36}$	0	0	$\frac{1}{36}$
	$\frac{5}{12}$	$\frac{1}{2}$	$\frac{1}{12}$	

(b)

$$
\begin{aligned}
& \mu_{X}=0 \frac{5}{12}+1 \frac{1}{2}+2 \frac{1}{12}=\frac{2}{3} \\
& \mu_{Y}=0 \frac{7}{12}+1 \frac{7}{18}+2 \frac{1}{36}=\frac{4}{9}
\end{aligned}
$$

(c)

$$
\operatorname{cov}(X, Y)=\sum_{x} \sum_{y}\left(x-\frac{2}{3}\right)\left(y-\frac{4}{9}\right) \cdot f(x, y)=-\frac{7}{54}
$$

