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1. Joint and Marginal Distributions

Two psychometric tests are administered to a group of 10 experimental subjects. The first
test is a standardized aptitude test used for university admissions. It returns a score between
0 and 100. Let X be the random variable denoting the aptitude test score. The second psy-
chometric test is a memory test. It measures the digit span, i.e., the number of digits in a
sequence that a subject is able to remember before they make a mistake. Let ¥ be the ran-
dom variable that denotes the digit span, ranging from 1 to 5. The results of the experiment
are given in the following table:

Subject 1 2 3 4 5 6 7 8 9 10
X 60 50 40 50 60 30 30 20 30 50
y 5 3 3 3 3 3 3 4 4 4

(a) Compute the distributions of X and Y.

(b) Compute the joint distribution of X and Y.

(c) Compute the marginal distributions of X and Y.
(d) Are X and Y independent?

(e) Compute the conditional distributions of X given Y = 3.

Solution:
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2. Expectation and Variance



(a) For the discrete random variable X with the following probability distribution:

(b)
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determine E(X) and var(X ). Now assume the functions g(X) = 3X +2 and h(X) = X
and determine E(g(X)) and E(h(X)).
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In Chebyshev’s theorem, which form does the inequality take for k = 1,2,3,47?
Solution: The general form of Chebyshev’s theorem is:
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So we get for k =1,2,3,4:
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3. Covariance

The covariance of two random variables X and Y with the joint distribution f(x,y) is defined

as:

cov(X,Y)=E((X —ux)(Y —uy)) ZZX bx ) (v —py) - f(x,)

where uy and uy are the means of X and Y.

Assume that X and Y have the following joint distribution:
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(a) Compute the marginal distributions of X and Y.

(b) Use the marginal distributions to compute tx and yy.

(c) Now compute the covariance of X and Y.

Solution:



(a) The marginal distributions are:
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