Computational Foundations of Cognitive Science 1 (2009-2010)

School of Informatics, University of Edinburgh
Lecturers: Frank Keller, Miles Osborne

Tutorial 8: Joint Distributions; Expectation and Variance

Week 9 (08-12 March, 2010)

1. Joint and Marginal Distributions

Two psychometric tests are administered to a group of 10 experimental subjects. The first test is a standardized aptitude test used for university admissions. It returns a score between 0 and 100. Let X be the random variable denoting the aptitude test score. The second psychometric test is a memory test. It measures the digit span, i.e., the number of digits in a sequence that a subject is able to remember before they make a mistake. Let Y be the random variable that denotes the digit span, ranging from 1 to 5 . The results of the experiment are given in the following table:

Subject	1	2	3	4	5	6	7	8	9	10
x	60	50	40	50	60	30	30	20	30	50
y	5	3	3	3	3	3	3	4	4	4

(a) Compute the distributions of X and Y.
(b) Compute the joint distribution of X and Y.
(c) Compute the marginal distributions of X and Y.
(d) Are X and Y independent?
(e) Compute the conditional distributions of X given $Y=3$.
2. Expectation and Variance
(a) For the discrete random variable X with the following probability distribution:

$$
f(x)=\frac{|x-2|}{7} \text { for } x=-1,0,1,2,3
$$

determine $E(X)$ and $\operatorname{var}(X)$. Now assume the functions $g(X)=3 X+2$ and $h(X)=X^{2}$ and determine $E(g(X))$ and $E(h(X))$.
(b) In Chebyshev's theorem, which form does the inequality take for $k=1,2,3,4$?

3. Covariance

The covariance of two random variables X and Y with the joint distribution $f(x, y)$ is:

$$
\operatorname{cov}(X, Y)=E\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right)=\sum_{x} \sum_{y}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right) \cdot f(x, y)
$$

where μ_{X} and μ_{Y} are the means of X and Y. Assume that X and Y have the following joint distribution:

(x, y)	0	1	2
0	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{12}$
1	$\frac{2}{9}$	$\frac{1}{6}$	0
2	$\frac{1}{36}$	0	0

(a) Compute the marginal distributions of X and Y.
(b) Use the marginal distributions to compute μ_{X} and μ_{Y}.
(c) Now compute the covariance of X and Y.

