Computational Foundations of Cognitive Science 1 (2009–2010)

School of Informatics, University of Edinburgh Lecturers: Frank Keller, Miles Osborne

Tutorial 8: Joint Distributions; Expectation and Variance

Week 9 (08-12 March, 2010)

1. Joint and Marginal Distributions

Two psychometric tests are administered to a group of 10 experimental subjects. The first test is a standardized aptitude test used for university admissions. It returns a score between 0 and 100. Let *X* be the random variable denoting the aptitude test score. The second psychometric test is a memory test. It measures the digit span, i.e., the number of digits in a sequence that a subject is able to remember before they make a mistake. Let *Y* be the random variable that denotes the digit span, ranging from 1 to 5. The results of the experiment are given in the following table:

Subject	1	2	3	4	5	6	7	8	9	10
x	60	50	40	50	60	30	30	20	30	50
у	5	3	3	3	3	3	3	4	4	4

- (a) Compute the distributions of *X* and *Y*.
- (b) Compute the joint distribution of *X* and *Y*.
- (c) Compute the marginal distributions of *X* and *Y*.
- (d) Are *X* and *Y* independent?
- (e) Compute the conditional distributions of X given Y = 3.

2. Expectation and Variance

(a) For the discrete random variable *X* with the following probability distribution:

$$f(x) = \frac{|x-2|}{7}$$
 for $x = -1, 0, 1, 2, 3$

determine E(X) and var(X). Now assume the functions g(X) = 3X + 2 and $h(X) = X^2$ and determine E(g(X)) and E(h(X)).

(b) In Chebyshev's theorem, which form does the inequality take for k = 1, 2, 3, 4?

3. Covariance

The *covariance* of two random variables X and Y with the joint distribution f(x,y) is:

$$cov(X,Y) = E((X - \mu_X)(Y - \mu_Y)) = \sum_{x} \sum_{y} (x - \mu_X)(y - \mu_Y) \cdot f(x,y)$$

where μ_X and μ_Y are the means of X and Y. Assume that X and Y have the following joint distribution:

(x,y)	0	1	2
0	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{12}$
1	$\frac{\overline{6}}{2}$	$\frac{1}{6}$	0
2	$\frac{1}{36}$	Ö	0

- (a) Compute the marginal distributions of *X* and *Y*.
- (b) Use the marginal distributions to compute μ_X and μ_Y .
- (c) Now compute the covariance of X and Y.