Computational Foundations of Cognitive Science 1 (-2009-2010)

School of Informatics, University of Edinburgh
Lecturers: Frank Keller, Miles Osborne

Solutions for Tutorial 5: Eigenvectors and Convolutions

Week 6 (15-19 February 2010)

1. Computing Eigenvectors

(a) Confirm that \mathbf{x} is a an eigenvector of A, and find the corresponding eigenvalue.

$$
\mathbf{x}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], A=\left[\begin{array}{lll}
4 & 0 & 1 \\
2 & 3 & 2 \\
1 & 0 & 4
\end{array}\right]
$$

Solution: We have $A \mathbf{x}=\left[\begin{array}{lll}4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]=\left[\begin{array}{c}5 \\ 10 \\ 5\end{array}\right]=5 \mathbf{x}$, thus \mathbf{x} is a an eigenvector of A corresponding to the eigenvalue $\lambda=5$.
(b) Find the characteristic equations of the following matrices, and then find their eigenvalues and eigenvectors.
$B=\left[\begin{array}{cc}3 & 0 \\ 8 & -1\end{array}\right], C=\left[\begin{array}{cc}10 & -9 \\ 4 & -2\end{array}\right]$.
Solution: The characteristic equation of B is $\operatorname{det}(\lambda I-B)=\left|\begin{array}{cc}\lambda-3 & 0 \\ -8 & \lambda+1\end{array}\right|=(\lambda-$ 3) $(\lambda+1)=0$. Thus $\lambda=3$ and $\lambda=-1$ are the eigenvalues of B. To obtain the eigenvectors, we solve $(\lambda I-B) \mathbf{x}=\mathbf{0}$, hence $\left[\begin{array}{cc}\lambda-3 & 0 \\ -8 & \lambda+1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. We substitute $\lambda=3$ and get: $\left[\begin{array}{cc}0 & 0 \\ -8 & 4\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$, which corresponds to the linear equations $0 x+0 y=0$ and $-8 x+4 y=0$, which have as solution $2 x=y$. The first eigenvector is therefore $\mathbf{x}=\left[\begin{array}{c}t \\ 2 t\end{array}\right]$. In the same way, we obtain the second eigenvector by solving $-4 x+0 y=0$ and $-8 x+0 y=0$, yielding $\mathbf{x}=\left[\begin{array}{l}0 \\ t\end{array}\right]$.
The characteristic equation of C is $\operatorname{det}(\lambda I-C)=\left|\begin{array}{cc}\lambda-10 & 9 \\ -4 & \lambda+2\end{array}\right|=(\lambda-10)(\lambda+2)+$ $36=(\lambda-4)^{2}=0$. Thus $\lambda=4$ is the only eigenvalue. The eigenvector is $\mathbf{x}=\left[\begin{array}{c}\frac{3}{2} t \\ t\end{array}\right]$.
(c) Find the eigenvalues of the following matrices.
$D=\left[\begin{array}{ccc}3 & 0 & 0 \\ -2 & 7 & 0 \\ 4 & 8 & 1\end{array}\right], E=\left[\begin{array}{cccc}-\frac{1}{3} & 0 & 0 & 0 \\ 0 & -\frac{1}{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \frac{1}{2}\end{array}\right]$.
Solution: The eigenvalues of a of a triangular matrix are the elements on its diagonal. Hence the eigenvalues of D are $\lambda=3, \lambda=7$, and $\lambda=1$. The eigenvalues of E are $\lambda=-\frac{1}{3}, \lambda=1$, and $\lambda=\frac{1}{2}$.
(d) Using the eigenvalues you computed in questions (b) and (c), compute the determinants and traces of matrices B to E.

Solution: The determinant is the product of the eigenvalues of a matrix, the trace is the sum of the eigenvalues. Hence $\operatorname{det}(B)=3(-1)=-3, \operatorname{tr}(B)=3+(-1)=2$, $\operatorname{det}(C)=4 \cdot 4=16, \operatorname{tr}(C)=4+4=8, \operatorname{det}(D)=3 \cdot 7 \cdot 1=21, \operatorname{tr}(D)=3+7+1=11$, $\operatorname{det}(E)=\left(-\frac{1}{3}\right)\left(-\frac{1}{3}\right) 1 \cdot \frac{1}{2}=\frac{1}{18}, \operatorname{tr}(E)=-\frac{1}{3}-\frac{1}{3}+1+\frac{1}{2}=\frac{4}{6}$. Note that eigenvalues that occur more than once need to be entered in the computation more than once (such as $\lambda=-\frac{1}{3}$ in E.

2. Properties of Eigenvectors

(a) Find some matrices whose characteristic polynomial is $p(\lambda)=\lambda(\lambda-2)^{2}(\lambda+1)$.

Solution: We can write the characteristic polynomial as $p(\lambda)=(\lambda-0)(\lambda-2)(\lambda-$ $2)(\lambda+1)$. This shows that the matrix has the eigenvectors $\lambda=0, \lambda=2, \lambda=2, \lambda=-1$. Any triangular matrix with these values on its diagonal (in any order) is a correct answer. An example is:

$$
\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

(b) Suppose that the characteristic polynomial of A is $p(\lambda)=(\lambda-1)(\lambda-3)^{2}(\lambda-4)^{3}$. What is the size of A ? Is A invertible?
Solution: The size of a matrix is given by the degree of the characteristic polynomial. Here, $p(\lambda)$ is of degree 6 , hence it describes a 6×6 matrix. A is invertible, as $\operatorname{det}(A)=$ $1 \cdot 3^{2} \cdot 4^{3}=576 \neq 0$.
(c) Suppose that A is a 2×2 matrix with $\operatorname{tr}(A)=\operatorname{det}(A)=4$. What are the eigenvalues of A ?
Solution: As we saw in the lecture, the characteristic equation of a 2×2 matrix is $\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)=0$. Here, $\lambda^{2}-4 \lambda+4=0$, which is equivalent to $(\lambda-2)^{2}=0$ Hence $\lambda=2$ is the only eigenvalue of A.
(d) Find all 2×2 matrices for which $\operatorname{tr}(A)=\operatorname{det}(A)$.

Solution: The matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ satisfies the condition $\operatorname{tr}(A)=\operatorname{det}(A)$ iff $a+d=$ $a d-b c$. If $d=1$ then this equation is satisfied iff $b c=-1$, e.g., $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right]$. If $d \neq 1$, then the equation is satisfied iff $a=\frac{d+b c}{d-1}$, e.g., $A=\left[\begin{array}{cc}1 & -1 \\ 1 & 2\end{array}\right]$.

3. Convolutions

(a) Compute the convolution $\mathbf{k} * \mathbf{a}$ for the following vectors. What is the function of the kernel \mathbf{k} ?
$\mathbf{k}=\left[\begin{array}{ll}-1 & 1\end{array}\right], \mathbf{a}=\left[\begin{array}{llllll}1 & 1 & 0 & 0 & 1 & 1\end{array}\right]$
Solution: The resulting vector $\mathbf{b}=\mathbf{k} * \mathbf{a}$ is of dimensionality $2+6-1=7$. Its elements are computed as $b_{x}=\sum_{u} k_{u} a_{x-u+1}$ (note that all summands with out of range indices are dropped from the sum).
$b_{1}=k_{1} a_{1-1+1}+k_{2} a_{1-2+1}=k_{1} a_{1}=-1$
$b_{2}=k_{2} a_{2-1+1}+k_{2} a_{2-2+1}=k_{1} a_{2}+k_{2} a_{1}=0$
$b_{3}=k_{3} a_{3-1+1}+k_{2} a_{3-2+1}=k_{1} a_{3}+k_{2} a_{2}=1$
$b_{4}=k_{4} a_{4-1+1}+k_{2} a_{4-2+1}=k_{1} a_{4}+k_{2} a_{3}=0$
$b_{5}=k_{5} a_{5-1+1}+k_{2} a_{5-2+1}=k_{1} a_{5}+k_{2} a_{4}=-1$
$b_{6}=k_{6} a_{6-1+1}+k_{2} a_{6-2+1}=k_{1} a_{6}+k_{2} a_{5}=0$
$b_{7}=k_{7} a_{7-1+1}+k_{2} a_{7-2+1}=k_{2} a_{6}=1$
So the resulting vector is $\mathbf{b}=\left[\begin{array}{lllllll}-1 & 0 & 1 & 0 & -1 & 0 & 1\end{array}\right]$. The kernel \mathbf{k} approximates the derivative: it is -1 if the elements of the input vector decrease in value (negative slope, e.g., change from 1 to 0), and 1 when the input values increase (positive slope, e.g., change from 0 to 1), and 0 when the input values remain unchanged (zero slope).
(b) Compute the convolution $f * g$ for the following functions.
$g(x)=\left\{\begin{array}{ll}3 & \text { if } 0 \leq x \leq 4 \\ 0 & \text { otherwise }\end{array}, \quad f(x)=\left\{\begin{aligned}-\frac{1}{2} & \text { if }-1 \leq x \leq 0 \\ \frac{1}{2} & \text { if } 0<x \leq 1 \\ 0 & \text { otherwise }\end{aligned}\right.\right.$
Solution: Integrating $g(x)$ yields $G(x)=\left\{\begin{array}{ll}0 & \text { if } x \leq 0 \\ 3 x & \text { if } 0 \leq x \leq 4 \\ 12 & \text { if } x>4\end{array}\right.$.
The convolution $f * g$ is defined as $(f * g)(x)=\int_{-\infty}^{+\infty} f(u) g(x-u) d u$. We can restrict the integration boundaries based on $f(u)$, and then apply integration by substitution, which yields $(f * g)(x)=-\frac{1}{2} \int_{-1}^{0} g(x-u) d u+\frac{1}{2} \int_{0}^{1} g(x-u) d u=\frac{1}{2} \int_{x+1}^{x} g(u) d u-$ $\frac{1}{2} \int_{x}^{x-1} g(u) d u=\frac{1}{2}(G(x)-G(x+1))-\frac{1}{2}(G(x-1)-G(x))=G(x)-\frac{1}{2} G(x+1)-$ $\frac{1}{2} G(x-1)$. The resulting function is therefore $(f * g)(x)=$

$$
\left\{\begin{array} { r l }
{ 0 } & { \text { if } x \leq - 1 } \\
{ - \frac { 3 } { 2 } (x + 1) } & { \text { if } - 1 < x \leq 0 } \\
{ 3 x - \frac { 3 } { 2 } (x + 1) } & { \text { if } 0 < x \leq 1 } \\
{ 3 x - \frac { 3 } { 2 } (x + 1) - \frac { 3 } { 2 } (x - 1) } & { \text { if } 1 < x \leq 3 } \\
{ 3 x - \frac { 1 } { 2 } \cdot 1 2 - \frac { 3 } { 2 } (x - 1) } & { \text { if } 3 < x \leq 4 } \\
{ 1 2 - \frac { 1 } { 2 } \cdot 1 2 - \frac { 3 } { 2 } (x - 1) } & { \text { if } 4 < x \leq 5 } \\
{ 1 2 - \frac { 1 } { 2 } \cdot 1 2 - \frac { 1 } { 2 } \cdot 1 2 } & { \text { if } x > 5 }
\end{array} \quad \left\{\begin{array}{rl}
0 & \text { if } x \leq-1 \\
-\frac{3}{2} x-\frac{3}{2} & \text { if }-1<x \leq 0 \\
\frac{3}{2} x-\frac{3}{2} & \text { if } 0<x \leq 1 \\
0 & \text { if } 1<x \leq 3 \\
\frac{3}{2} x-\frac{9}{2} & \text { if } 3<x \leq 4 \\
-\frac{3}{2} x-\frac{9}{2} & \text { if } 4<x \leq 5 \\
0 & \text { if } x>5
\end{array} .\right.\right.
$$

(c) In image processing, what is the function of the following kernels?

$$
K_{1}=\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1
\end{array}\right], K_{2}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 4 & 1 \\
0 & 1 & 0
\end{array}\right], K_{3}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 4 & -1 \\
0 & -1 & 0
\end{array}\right] .
$$

Solution: K_{1} is a horizontal edge detector (the transpose of the vertical edge detector discussed in the lecture). It is basically a more sophisticated version of the derivative kernel in question (a). K_{2} blurs the image by averaging a pixel with the four pixels above and below and to its left and right. K_{3} does exactly the opposite: it sharpens the image by changing the value of each pixel so that it is more distinct from the values of the four pixels below, above, left, and right of it.

