Computational Foundations of Cognitive Science 1 (2009-2010)

School of Informatics, University of Edinburgh

Lecturers: Frank Keller, Miles Osborne

Tutorial 5: Eigenvectors and Convolutions

Week 6 (15-19 February 2010)

1. Computing Eigenvectors

(a) Confirm that \mathbf{x} is a an eigenvector of A, and find the corresponding eigenvalue.

$$
\mathbf{x}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], A=\left[\begin{array}{lll}
4 & 0 & 1 \\
2 & 3 & 2 \\
1 & 0 & 4
\end{array}\right]
$$

(b) Find the characteristic equations of the following matrices, and then find their eigenvalues and eigenvectors.

$$
B=\left[\begin{array}{cc}
3 & 0 \\
8 & -1
\end{array}\right], C=\left[\begin{array}{cc}
10 & -9 \\
4 & -2
\end{array}\right] .
$$

(c) Find the eigenvalues of the following matrices.

$$
D=\left[\begin{array}{ccc}
3 & 0 & 0 \\
-2 & 7 & 0 \\
4 & 8 & 1
\end{array}\right], E=\left[\begin{array}{cccc}
-\frac{1}{3} & 0 & 0 & 0 \\
0 & -\frac{1}{3} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \frac{1}{2}
\end{array}\right]
$$

(d) Using the eigenvalues you computed in questions (b) and (c), compute the determinants and traces of matrices A to E.

2. Properties of Eigenvectors

(a) Find some matrices whose characteristic polynomial is $p(\lambda)=\lambda(\lambda-2)^{2}(\lambda+1)$.
(b) Suppose that the characteristic polynomial of A is $p(\lambda)=(\lambda-1)(\lambda-3)^{2}(\lambda-4)^{3}$. What is the size of A ? Is A invertible?
(c) Suppose that A is a 2×2 matrix with $\operatorname{tr}(A)=\operatorname{det}(A)=4$. What are the eigenvalues of A ?
(d) Find all 2×2 matrices for which $\operatorname{tr}(A)=\operatorname{det}(A)$.

3. Convolutions

(a) Compute the convolution $\mathbf{k} * \mathbf{a}$ for the following vectors. What is the function of the kernel \mathbf{k} ?
$\mathbf{k}=\left[\begin{array}{ll}-1 & 1\end{array}\right], \mathbf{a}=\left[\begin{array}{llllll}1 & 1 & 0 & 0 & 1 & 1\end{array}\right]$
(b) Compute the convolution $f * g$ for the following functions.

$$
g(x)=\left\{\begin{array}{ll}
3 & \text { if } 0 \leq x \leq 4 \\
0 & \text { otherwise }
\end{array}, \quad f(x)=\left\{\begin{aligned}
-\frac{1}{2} & \text { if }-1 \leq x \leq 0 \\
\frac{1}{2} & \text { if } 0<x \leq 1 \\
0 & \text { otherwise }
\end{aligned}\right.\right.
$$

(c) In image processing, what is the function of the following kernels?

$$
K_{1}=\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1
\end{array}\right], K_{2}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 4 & 1 \\
0 & 1 & 0
\end{array}\right], K_{3}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 4 & -1 \\
0 & -1 & 0
\end{array}\right] .
$$

