Computational Foundations of Cognitive Science 1 (2009-2010)

School of Informatics, University of Edinburgh

Lecturers: Frank Keller, Miles Osborne

Solutions for Tutorial 4: Inverses and Determinants

Week 5 (08-12 February 2010)

1. Computing Inverses

Assume the following matrices:

$$
A=\left[\begin{array}{ll}
3 & 1 \\
5 & 2
\end{array}\right], B=\left[\begin{array}{cc}
2 & -3 \\
4 & 4
\end{array}\right]
$$

Compute the following matrices, where possible:
(a) A^{-1}, B^{-1}

Solution: $\operatorname{det}(A)=a d-b c=3 \cdot 2-1 \cdot 5=1 \quad A^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]=\left[\begin{array}{cc}2 & -1 \\ -5 & 3\end{array}\right]$ $\operatorname{det}(B)=8+12=20 \quad B^{-1}=\frac{1}{20}\left[\begin{array}{cc}4 & 3 \\ -4 & 2\end{array}\right]$
(b) $\left(A^{T}\right)^{-1}$

Solution: $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}=\left[\begin{array}{cc}2 & -5 \\ -1 & 3\end{array}\right]$
(c) $(2 A)^{-1}$

Solution: $(2 A)^{-1}=\frac{1}{2} A^{-1}=\left[\begin{array}{cc}1 & -\frac{1}{2} \\ -\frac{5}{2} & \frac{3}{2}\end{array}\right]$
(d) $(A B)^{-1}$

Solution: $(A B)^{-1}=B^{-1} A^{-1}=\frac{1}{20}\left[\begin{array}{cc}4 & 3 \\ -4 & 2\end{array}\right]\left[\begin{array}{cc}2 & -1 \\ -5 & 3\end{array}\right]=\frac{1}{20}\left[\begin{array}{cc}-7 & 5 \\ -18 & 10\end{array}\right]$

2. Terms with Inverses

Assume that A, B, C, D are invertible matrices, such that the products given in (a) and (b) are defined.
(a) Simplify the following term as much as possible: $(A B)^{-1}\left(A C^{-1}\right)\left(D^{-1} C^{-1}\right)^{-1} D^{-1}$

Solution: $(A B)^{-1}\left(A C^{-1}\right)\left(D^{-1} C^{-1}\right)^{-1} D^{-1}=B^{-1} A^{-1} A C^{-1} C^{-1} D D^{-1}=B^{-1}$
(b) Simplify the following term as much as possible: $\left(A C^{-1}\right)^{-1}\left(A C^{-1}\right)\left(A C^{-1}\right)^{-1} A D^{-1}$

Solution: $\left(A C^{-1}\right)^{-1}\left(A C^{-1}\right)\left(A C^{-1}\right)^{-1} A D^{-1}=C A^{-1} A C^{-1} C A^{-1} A D^{-1}=C D^{-1}$
(c) Find all values of c for which $A=\left[\begin{array}{cc}-c & -1 \\ 1 & c\end{array}\right]$ is invertible.

Solution: A is invertible iff $\operatorname{det}(A)=-c^{2}+1 \neq 0$, i.e., iff $c \neq \pm 1$.

3. Matrices with Special Forms

Assume the following matrices:
$C=\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 5\end{array}\right], D=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & \frac{1}{3}\end{array}\right], E=\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2\end{array}\right], F=\left[\begin{array}{cc}2 & 1 \\ -4 & 1 \\ 2 & 5\end{array}\right], G=\left[\begin{array}{cc}2 & -1 \\ -1 & 3\end{array}\right]$
Compute the following matrices, where possible:
(a) C^{-1}, D^{-1}, G^{-1}

Solution: C is not invertible, as it has a row of zeros. D is a diagonal matrix, hence it can be inverted by taking the reciprocal of the elements on the diagonal: $D^{-1}=$ $\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 3\end{array}\right]$. The inverse of a symmetric matrix is symmetric and is computed in the standard way using the determinant: $G^{-1}=\frac{1}{5}\left[\begin{array}{ll}3 & 1 \\ 1 & 2\end{array}\right]$.
(b) $C D$

Solution: $\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 5\end{array}\right]\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & \frac{1}{3}\end{array}\right]=\left[\begin{array}{ccc}4(-1) & 0 & 0 \\ 0 & 0 \cdot 2 & 0 \\ 0 & 0 & 5 \cdot \frac{1}{3}\end{array}\right]=\left[\begin{array}{ccc}-4 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \frac{5}{3}\end{array}\right]$
(c) $E F$

Solution: $\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2\end{array}\right]\left[\begin{array}{cc}2 & 1 \\ -4 & 1 \\ 2 & 5\end{array}\right]=\left[\begin{array}{cc}3 \cdot 2 & 3 \cdot 1 \\ (-1)(-4) & (-1) 1 \\ 2 \cdot 2 & 2 \cdot 5\end{array}\right]=\left[\begin{array}{cc}6 & 3 \\ 4 & -1 \\ 4 & 10\end{array}\right]$
(d) Which of the following is symmetric: $C, E, F^{T}, F^{T} F, G^{-1}$.

Solution: C and E are symmetric by definition. F^{T} is not symmetric as it is not square. $F^{T} F$ is symmetric as $A^{T} A$ and $A A^{T}$ are symmetric for any $A . G^{-1}$ is symmetric as the inverse of a symmetric matrix is symmetric.

4. Determinants

Assume the matrices A to F in Questions 1 and 3, as well as:
$H=\left[\begin{array}{cc}\lambda-2 & 1 \\ -5 & \lambda+4\end{array}\right]$
(a) Compute $\operatorname{det}(A), \operatorname{det}\left(A^{-1}\right), \operatorname{det}\left(A^{T}\right)$.

Solution: $\operatorname{det}(A)=a d-b c=3 \cdot 2-1 \cdot 5=1 \quad \operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}=1 \quad \operatorname{det}\left(A^{T}\right)=$ $\operatorname{det}(A)=1$
(b) Compute $\operatorname{det}(C), \operatorname{det}(D), \operatorname{det}(G)$.

Solution: For diagonal and triangular matrices, the determinant is the product of the entries on the main diagonal. Hence $\operatorname{det}(C)=4 \cdot 0 \cdot 5=0 \quad \operatorname{det}(D)=(-1) 2 \cdot \frac{1}{3}=-\frac{2}{3}$. The determinants of symmetric matrices have no special properties, hence $\operatorname{det}(G)=$ $2 \cdot 3-(-1)(-1)=5$.
(c) Find all values of λ for which $\operatorname{det}(H)=0$.

Solution: $\operatorname{det}(H)=(\lambda-2)(\lambda+4)+5=\lambda^{2}+2 \lambda-3=(\lambda-1)(\lambda+3)$. Thus $\operatorname{det}(H)=0$ iff $\lambda=1$ or $\lambda=-3$.

