Computational Foundations of Cognitive Science 1 (2009–2010)

School of Informatics, University of Edinburgh Lecturers: Frank Keller, Miles Osborne

Tutorial 4: Inverses and Determinants

Week 5 (08-12 February 2010)

1. Computing Inverses

Assume the following matrices:

$$A = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}, B = \begin{bmatrix} 2 & -3 \\ 4 & 4 \end{bmatrix}$$

Compute the following matrices, where possible:

(a)
$$A^{-1}, B^{-1}$$

- (b) $(A^T)^{-1}$
- (c) $(2A)^{-1}$
- (d) $(AB)^{-1}$

2. Terms with Inverses

Assume that A, B, C, D are invertible matrices, such that the products given in (a) and (b) are defined.

- (a) Simplify the following term as much as possible: $(AB)^{-1}(AC^{-1})(D^{-1}C^{-1})^{-1}D^{-1}$
- (b) Simplify the following term as much as possible: $(AC^{-1})^{-1}(AC^{-1})(AC^{-1})^{-1}AD^{-1}$

(c) Find all values of c for which $A = \begin{bmatrix} -c & -1 \\ 1 & c \end{bmatrix}$ is invertible.

3. Matrices with Special Forms

Assume the following matrices:

$$C = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix}, D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}, E = \begin{bmatrix} 3 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}, F = \begin{bmatrix} 2 & 1 \\ -4 & 1 \\ 2 & 5 \end{bmatrix}, G = \begin{bmatrix} 2 & -1 \\ -1 & 3 \end{bmatrix}$$

Compute the following matrices, where possible:

- (a) C^{-1}, D^{-1}, G^{-1}
- (b) *CD*
- (c) *EF*
- (d) Which of the following is symmetric: C, E, F^T, F^TF, G^{-1} .

4. Determinants

Assume the matrices A to F in Questions 1 and 3, as well as:

$$H = \begin{bmatrix} \lambda - 2 & 1 \\ -5 & \lambda + 4 \end{bmatrix}$$

(a) Compute det(A), $det(A^{-1})$, $det(A^T)$.

- (b) Compute det(C), det(D), det(G).
- (c) Find all values of λ for which det(H) = 0.