Computational Foundations of Cognitive Science 1 (2009-2010)

School of Informatics, University of Edinburgh
Lecturers: Frank Keller, Miles Osborne

Tutorial 4: Inverses and Determinants

Week 5 (08-12 February 2010)

1. Computing Inverses

Assume the following matrices:
$A=\left[\begin{array}{ll}3 & 1 \\ 5 & 2\end{array}\right], B=\left[\begin{array}{cc}2 & -3 \\ 4 & 4\end{array}\right]$
Compute the following matrices, where possible:
(a) A^{-1}, B^{-1}
(b) $\left(A^{T}\right)^{-1}$
(c) $(2 A)^{-1}$
(d) $(A B)^{-1}$

2. Terms with Inverses

Assume that A, B, C, D are invertible matrices, such that the products given in (a) and (b) are defined.
(a) Simplify the following term as much as possible: $(A B)^{-1}\left(A C^{-1}\right)\left(D^{-1} C^{-1}\right)^{-1} D^{-1}$
(b) Simplify the following term as much as possible: $\left(A C^{-1}\right)^{-1}\left(A C^{-1}\right)\left(A C^{-1}\right)^{-1} A D^{-1}$
(c) Find all values of c for which $A=\left[\begin{array}{cc}-c & -1 \\ 1 & c\end{array}\right]$ is invertible.
3. Matrices with Special Forms

Assume the following matrices:
$C=\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 5\end{array}\right], D=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & \frac{1}{3}\end{array}\right], E=\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2\end{array}\right], F=\left[\begin{array}{cc}2 & 1 \\ -4 & 1 \\ 2 & 5\end{array}\right], G=\left[\begin{array}{cc}2 & -1 \\ -1 & 3\end{array}\right]$
Compute the following matrices, where possible:
(a) C^{-1}, D^{-1}, G^{-1}
(b) $C D$
(c) $E F$
(d) Which of the following is symmetric: $C, E, F^{T}, F^{T} F, G^{-1}$.

4. Determinants

Assume the matrices A to F in Questions 1 and 3, as well as:
$H=\left[\begin{array}{cc}\lambda-2 & 1 \\ -5 & \lambda+4\end{array}\right]$
(a) Compute $\operatorname{det}(A), \operatorname{det}\left(A^{-1}\right), \operatorname{det}\left(A^{T}\right)$.
(b) Compute $\operatorname{det}(C), \operatorname{det}(D), \operatorname{det}(G)$.
(c) Find all values of λ for which $\operatorname{det}(H)=0$.

