Computational Foundations of Cognitive Science 1 (2009-2010)

School of Informatics, University of Edinburgh
Lecturers: Frank Keller, Miles Osborne

Solutions for Tutorial 3: Matrix Operations

Week 4 (01-05 February 2010)

1. Matrix Addition and Subtraction

Assume the following matrices:
$A=\left[\begin{array}{cc}3 & 0 \\ -1 & 2 \\ 1 & 1\end{array}\right], B=\left[\begin{array}{cc}2 & 1 \\ -3 & 1 \\ 4 & 0\end{array}\right], C=\left[\begin{array}{cc}1 & 0 \\ 3 & -1\end{array}\right], D=\left[\begin{array}{cc}1 & 1 \\ -3 & 3\end{array}\right], E=\left[\begin{array}{lll}1 & 4 & 2 \\ 3 & 1 & 5\end{array}\right]$
Compute the following matrices, where possible:
(a) $A+2 B$

Solution: $\left[\begin{array}{cc}3 & 0 \\ -1 & 2 \\ 1 & 1\end{array}\right]+2\left[\begin{array}{cc}2 & 1 \\ -3 & 1 \\ 4 & 0\end{array}\right]=\left[\begin{array}{cc}7 & 2 \\ -7 & 4 \\ 9 & 1\end{array}\right]$
(b) $A-B^{T}$

Solution: not defined, as A is 3×2 and B^{T} is 2×3.
(c) $4 D-3 C^{T}$

Solution: $4\left[\begin{array}{cc}1 & 1 \\ -3 & 3\end{array}\right]-3\left[\begin{array}{cc}1 & 3 \\ 0 & -1\end{array}\right]=\left[\begin{array}{cc}1 & -5 \\ -12 & 15\end{array}\right]$
(d) $D-D^{T}$

Solution:

$$
\left[\begin{array}{cc}
1 & 1 \\
-3 & 3
\end{array}\right]-\left[\begin{array}{cc}
1 & -3 \\
1 & 3
\end{array}\right]=\left[\begin{array}{cc}
0 & 4 \\
-4 & 0
\end{array}\right]
$$

2. Multiplying a Matrix with a Vector

Assume the following: $A=\left[\begin{array}{ccc}1 & 5 & 2 \\ -4 & 9 & 1 \\ 2 & 0 & 3\end{array}\right], \mathbf{x}=\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right]$. Compute $A \mathbf{x}$.
Solution: $2\left[\begin{array}{c}1 \\ -4 \\ 2\end{array}\right]-1\left[\begin{array}{l}5 \\ 9 \\ 0\end{array}\right]+3\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]=\left[\begin{array}{c}3 \\ -14 \\ 13\end{array}\right]$

3. Matrix Multiplication

Assume the same matrices as in Question 1. Compute the following matrices, where possible:
(a) $C D$

Solution: $\quad\left[\begin{array}{cc}1 & 0 \\ 3 & -1\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ -3 & 3\end{array}\right]=\left[\begin{array}{ll}\mathbf{r}_{1}(C) \mathbf{c}_{1}(D) & \mathbf{r}_{1}(C) \mathbf{c}_{2}(D) \\ \mathbf{r}_{2}(C) \mathbf{c}_{1}(D) & \mathbf{r}_{2}(C) \mathbf{c}_{2}(D)\end{array}\right]=$ $\left[\begin{array}{cc}1 \cdot 1+0(-3) & 1 \cdot 1+0 \cdot 3 \\ 3 \cdot 1+(-1)(-3) & 3 \cdot 1+(-1) 3\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 6 & 0\end{array}\right]$
(b) $A E$

Solution: $\left[\begin{array}{cc}3 & 0 \\ -1 & 2 \\ 1 & 1\end{array}\right]\left[\begin{array}{lll}1 & 4 & 2 \\ 3 & 1 & 5\end{array}\right]=\left[\begin{array}{lll}\mathbf{r}_{1}(A) \mathbf{c}_{1}(E) & \mathbf{r}_{1}(A) \mathbf{c}_{2}(E) & \mathbf{r}_{1}(A) \mathbf{c}_{3}(E) \\ \mathbf{r}_{2}(A) \mathbf{c}_{1}(E) & \mathbf{r}_{2}(A) \mathbf{c}_{2}(E) & \mathbf{r}_{2}(A) \mathbf{c}_{3}(E) \\ \mathbf{r}_{3}(A) \mathbf{c}_{1}(E) & \mathbf{r}_{3}(A) \mathbf{c}_{2}(E) & \mathbf{r}_{3}(A) \mathbf{c}_{3}(E)\end{array}\right]=$ $\left[\begin{array}{ccc}3 & 12 & 6 \\ 5 & -2 & 8 \\ 4 & 5 & 7\end{array}\right]$
(c) $B B^{T}$

Solution: $\left[\begin{array}{ccc}5 & -5 & 8 \\ -5 & 10 & -12 \\ 8 & -12 & 16\end{array}\right]$
(d) $D A$

Solution: not defined, as D is 2×2 and A is 3×2.

4. Inner and Outer Product

Let $\mathbf{u}=\left[\begin{array}{c}-2 \\ 3\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}4 \\ 5\end{array}\right]$.
(a) Find the matrix inner product of \mathbf{u} with \mathbf{v}.

Solution: $\mathbf{u}^{T} \mathbf{v}=\left[\begin{array}{ll}-2 & 3\end{array}\right]\left[\begin{array}{l}4 \\ 5\end{array}\right]=(-2) 4+3 \cdot 5=7$
(b) Find the matrix outer product of \mathbf{u} with \mathbf{v}.

Solution: $\mathbf{u v}^{T}=\left[\begin{array}{c}-2 \\ 3\end{array}\right]\left[\begin{array}{ll}4 & 5\end{array}\right]=\left[\begin{array}{cc}(-2) 4 & (-2) 5 \\ 3 \cdot 4 & 3 \cdot 5\end{array}\right]=\left[\begin{array}{cc}-8 & -10 \\ 12 & 15\end{array}\right]$
(c) Find the dot product of \mathbf{u} with \mathbf{v}.

Solution: $\mathbf{u} \cdot \mathbf{v}=\mathbf{u}^{T} \mathbf{v}$

5. Application

The following tables shows a record of unit sales for a clothing store. Let M denote the 4×3 matrix of sales.

	Small	Medium	Large
Shirts	45	60	75
Jeans	30	30	40
Suits	12	65	45
Raincoats	15	40	25

(a) Find the column vector \mathbf{x} for which $M \mathbf{x}$ provides a list of the number of shirts, jeans, suits, and raincoats sold.
Solution: Let $\mathbf{x}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. Then the components of $M \mathbf{x}=\left[\begin{array}{lll}45 & 60 & 75 \\ 30 & 30 & 40 \\ 12 & 65 & 45 \\ 15 & 40 & 25\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{c}180 \\ 100 \\ 122 \\ 80\end{array}\right]$ represent the total number of shirts, jeans, suits, and raincoats sold.
(b) Find the row vector \mathbf{y} for which $\mathbf{y} M$ provides a list of small, medium, and large items sold.
Solution: Let $\mathbf{y}=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]$. Then the components of $\mathbf{y} M=$ $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\left[\begin{array}{lll}45 & 60 & 75 \\ 30 & 30 & 40 \\ 12 & 65 & 45 \\ 15 & 40 & 25\end{array}\right]=\left[\begin{array}{lll}102 & 195 & 125\end{array}\right]$ represent the total number of small, medium, and large items sold.
(c) What does $\mathbf{y} M \mathbf{x}$ represent?

Solution: The product $\mathbf{y} M \mathbf{x}=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]\left[\begin{array}{lll}45 & 60 & 75 \\ 30 & 30 & 40 \\ 12 & 65 & 45 \\ 15 & 40 & 25\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=$ $\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]\left[\begin{array}{c}180 \\ 100 \\ 122 \\ 90\end{array}\right]=492$ represent the total number of items sold.

6. Image Processing

Assume that you have two matrices A and B representing greyscale images. A represents a picture of a lake and B a picture of a ship. If you compute $A+B$ and $A+B^{T}$, what do they represent? What do $A B$ and $B B^{T}$ represent?
Solution: $A+B$ represents the addition of the two pictures, i.e., a picture of a lake and a ship. $A+B^{T}$ is the same picture, but with the ship rotated by 90 degrees anticlockwise. $A B$ and $B B^{T}$ do not have a useful interpretation for these two images. Most likely the resulting images will look very bright (or even completely white), as matrix multiplication means that a lot of values will be larger than 255 (i.e., representing white).

