Computational Foundations of Cognitive Science 1 (2009–2010)

School of Informatics, University of Edinburgh Lecturers: Frank Keller, Miles Osborne

Solutions for Tutorial 3: Matrix Operations

Week 4 (01–05 February 2010)

1. Matrix Addition and Subtraction

Assume the following matrices:

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 2 & 1 \\ -3 & 1 \\ 4 & 0 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \\ 3 & -1 \end{bmatrix}, D = \begin{bmatrix} 1 & 1 \\ -3 & 3 \end{bmatrix}, E = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}$$

Compute the following matrices, where possible:

(a) A + 2B

	[3	0]		2	1]		[7	2]
Solution:	-1	2	+2	-3	1	=	-7	4
Solution:	1	1		4	0		9	1

(b) $A - B^T$

Solution: not defined, as *A* is 3×2 and B^T is 2×3 .

(c) $4D - 3C^T$

Solution:
$$4\begin{bmatrix} 1 & 1 \\ -3 & 3 \end{bmatrix} - 3\begin{bmatrix} 1 & 3 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & -5 \\ -12 & 15 \end{bmatrix}$$

(d) $D - D^T$

Solution:

$$\begin{bmatrix} 1 & 1 \\ -3 & 3 \end{bmatrix} - \begin{bmatrix} 1 & -3 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 4 \\ -4 & 0 \end{bmatrix}$$

2. Multiplying a Matrix with a Vector

Assume the following:
$$A = \begin{bmatrix} 1 & 5 & 2 \\ -4 & 9 & 1 \\ 2 & 0 & 3 \end{bmatrix}$$
, $\mathbf{x} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$. Compute $A\mathbf{x}$.
Solution: $2 \begin{bmatrix} 1 \\ -4 \\ 2 \end{bmatrix} - 1 \begin{bmatrix} 5 \\ 9 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ -14 \\ 13 \end{bmatrix}$

3. Matrix Multiplication

Assume the same matrices as in Question 1. Compute the following matrices, where possible:

(a) *CD*

Solution:
$$\begin{bmatrix} 1 & 0 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -3 & 3 \end{bmatrix} = \begin{bmatrix} \mathbf{r}_1(C)\mathbf{c}_1(D) & \mathbf{r}_1(C)\mathbf{c}_2(D) \\ \mathbf{r}_2(C)\mathbf{c}_1(D) & \mathbf{r}_2(C)\mathbf{c}_2(D) \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 \\ 3 \cdot 1 + (-1)(-3) & 3 \cdot 1 + (-1)3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 6 & 0 \end{bmatrix}$$

(b)
$$AE$$

Solution: $\begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix} = \begin{bmatrix} \mathbf{r}_1(A)\mathbf{c}_1(E) & \mathbf{r}_1(A)\mathbf{c}_2(E) & \mathbf{r}_1(A)\mathbf{c}_3(E) \\ \mathbf{r}_2(A)\mathbf{c}_1(E) & \mathbf{r}_2(A)\mathbf{c}_2(E) & \mathbf{r}_2(A)\mathbf{c}_3(E) \end{bmatrix} = \begin{bmatrix} 3 & 12 & 6 \\ 5 & -2 & 8 \\ 4 & 5 & 7 \end{bmatrix}$
(c) BB^T
Solution: $\begin{bmatrix} 5 & -5 & 8 \\ -5 & 10 & -12 \\ 8 & -12 & 16 \end{bmatrix}$

Solution: not defined, as *D* is 2×2 and *A* is 3×2 .

4. Inner and Outer Product

Let
$$\mathbf{u} = \begin{bmatrix} -2\\ 3 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 4\\ 5 \end{bmatrix}$.

(a) Find the matrix inner product of **u** with **v**.

Solution:
$$\mathbf{u}^T \mathbf{v} = \begin{bmatrix} -2 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \end{bmatrix} = (-2)4 + 3 \cdot 5 = 7$$

(b) Find the matrix outer product of \mathbf{u} with \mathbf{v} .

Solution:
$$\mathbf{u}\mathbf{v}^T = \begin{bmatrix} -2\\ 3 \end{bmatrix} \begin{bmatrix} 4 & 5 \end{bmatrix} = \begin{bmatrix} (-2)4 & (-2)5\\ 3 \cdot 4 & 3 \cdot 5 \end{bmatrix} = \begin{bmatrix} -8 & -10\\ 12 & 15 \end{bmatrix}$$

(c) Find the dot product of \mathbf{u} with \mathbf{v} .

Solution: $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v}$

5. Application

The following tables shows a record of unit sales for a clothing store. Let *M* denote the 4×3 matrix of sales.

	Small	Medium	Large
Shirts	45	60	75
Jeans	30	30	40
Suits	12	65	45
Raincoats	15	40	25

(a) Find the column vector **x** for which M**x** provides a list of the number of shirts, jeans, suits, and raincoats sold.

Solution: Let
$$\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
. Then the components of $M\mathbf{x} = \begin{bmatrix} 45 & 60 & 75 \\ 30 & 30 & 40 \\ 12 & 65 & 45 \\ 15 & 40 & 25 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 180 \\ 100 \\ 122 \\ 80 \end{bmatrix}$

represent the total number of shirts, jeans, suits, and raincoats sold.

(b) Find the row vector \mathbf{y} for which $\mathbf{y}M$ provides a list of small, medium, and large items sold.

Solution: Let $\mathbf{y} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$. Then the components of $\mathbf{y}M = \begin{bmatrix} 45 & 60 & 75 \end{bmatrix}$

 $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{vmatrix} 30 & 30 & 40 \\ 12 & 65 & 45 \\ 15 & 40 & 25 \end{vmatrix} = \begin{bmatrix} 102 & 195 & 125 \end{bmatrix}$ represent the total number of

small, medium, and large items sold.

(c) What does **y***M***x** represent?

Solution: The product
$$\mathbf{y}M\mathbf{x} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 45 & 60 & 75 \\ 30 & 30 & 40 \\ 12 & 65 & 45 \\ 15 & 40 & 25 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 180 \\ 100 \\ 122 \\ 90 \end{bmatrix} = 492$$
 represent the total number of items sold.

6. Image Processing

Assume that you have two matrices A and B representing greyscale images. A represents a picture of a lake and B a picture of a ship. If you compute A + B and $A + B^T$, what do they represent? What do AB and BB^T represent?

Solution: A + B represents the addition of the two pictures, i.e., a picture of a lake and a ship. $A + B^T$ is the same picture, but with the ship rotated by 90 degrees anticlockwise. AB and BB^T do not have a useful interpretation for these two images. Most likely the resulting images will look very bright (or even completely white), as matrix multiplication means that a lot of values will be larger than 255 (i.e., representing white).