Computational Foundations of Cognitive Science 1 (2009–2010)

School of Informatics, University of Edinburgh Lecturers: Frank Keller, Miles Osborne

Tutorial 3: Matrix Operations

Week 4 (01–05 February 2010)

1. Matrix Addition and Subtraction

Assume the following matrices:

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 2 & 1 \\ -3 & 1 \\ 4 & 0 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \\ 3 & -1 \end{bmatrix}, D = \begin{bmatrix} 1 & 1 \\ -3 & 3 \end{bmatrix}, E = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}$$

Compute the following matrices, where possible:

- (a) A + 2B
- (b) $A B^T$
- (c) $4D 3C^T$
- (d) $D D^T$

2. Multiplying a Matrix with a Vector

Assume the following: $A = \begin{bmatrix} 1 & 5 & 2 \\ -4 & 9 & 1 \\ 2 & 0 & 3 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$. Compute $A\mathbf{x}$.

3. Matrix Multiplication

Assume the same matrices as in Question 1. Compute the following matrices, where possible:

- (a) CD
- (b) *AE*
- (c) BB^T
- (d) *DA*

4. Inner and Outer Product

Let
$$\mathbf{u} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$.

- (a) Find the matrix inner product of **u** with **v**.
- (b) Find the matrix outer product of **u** with **v**.
- (c) Find the dot product of **u** with **v**.

5. Application

The following tables shows a record of unit sales for a clothing store. Let *M* denote the 4×3 matrix of sales.

	Small	Medium	Large
Shirts	45	60	75
Jeans	30	30	40
Suits	12	65	45
Raincoats	15	40	25

- (a) Find the column vector \mathbf{x} for which $M\mathbf{x}$ provides a list of the number of shirts, jeans, suits, and raincoats sold.
- (b) Find the row vector \mathbf{y} for which $\mathbf{y}M$ provides a list of small, medium, and large items sold.
- (c) What does **y***M***x** represent?

6. Image Processing

Assume that you have two matrices A and B representing greyscale images. A represents a picture of a lake and B a picture of a ship. If you compute A + B and $A + B^T$, what do they represent? What do AB and BB^T represent?