Computational Foundations of Cognitive Science 1 (2009-2010)

School of Informatics, University of Edinburgh
Lecturers: Frank Keller, Miles Osborne

Tutorial 3: Matrix Operations

Week 4 (01-05 February 2010)

1. Matrix Addition and Subtraction

Assume the following matrices:
$A=\left[\begin{array}{cc}3 & 0 \\ -1 & 2 \\ 1 & 1\end{array}\right], B=\left[\begin{array}{cc}2 & 1 \\ -3 & 1 \\ 4 & 0\end{array}\right], C=\left[\begin{array}{cc}1 & 0 \\ 3 & -1\end{array}\right], D=\left[\begin{array}{cc}1 & 1 \\ -3 & 3\end{array}\right], E=\left[\begin{array}{lll}1 & 4 & 2 \\ 3 & 1 & 5\end{array}\right]$
Compute the following matrices, where possible:
(a) $A+2 B$
(b) $A-B^{T}$
(c) $4 D-3 C^{T}$
(d) $D-D^{T}$
2. Multiplying a Matrix with a Vector

Assume the following: $A=\left[\begin{array}{ccc}1 & 5 & 2 \\ -4 & 9 & 1 \\ 2 & 0 & 3\end{array}\right], \mathbf{x}=\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right]$. Compute $A \mathbf{x}$.
3. Matrix Multiplication

Assume the same matrices as in Question 1. Compute the following matrices, where possible:
(a) $C D$
(b) $A E$
(c) $B B^{T}$
(d) $D A$
4. Inner and Outer Product

Let $\mathbf{u}=\left[\begin{array}{c}-2 \\ 3\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}4 \\ 5\end{array}\right]$.
(a) Find the matrix inner product of \mathbf{u} with \mathbf{v}.
(b) Find the matrix outer product of \mathbf{u} with \mathbf{v}.
(c) Find the dot product of \mathbf{u} with \mathbf{v}.
5. Application

The following tables shows a record of unit sales for a clothing store. Let M denote the 4×3 matrix of sales.

	Small	Medium	Large
Shirts	45	60	75
Jeans	30	30	40
Suits	12	65	45
Raincoats	15	40	25

(a) Find the column vector \mathbf{x} for which $M \mathbf{x}$ provides a list of the number of shirts, jeans, suits, and raincoats sold.
(b) Find the row vector \mathbf{y} for which $\mathbf{y} M$ provides a list of small, medium, and large items sold.
(c) What does $\mathbf{y} M \mathbf{x}$ represent?

6. Image Processing

Assume that you have two matrices A and B representing greyscale images. A represents a picture of a lake and B a picture of a ship. If you compute $A+B$ and $A+B^{T}$, what do they represent? What do $A B$ and $B B^{T}$ represent?

