CFCS1

Vectors

Miles Osborne

School of Informatics University of Edinburgh miles@inf.ed.ac.uk

January 13, 2009

Miles Osborne

CFCS1

1

Background Operations

Motivation

We often want to group together data:

- Measurements of an experiment.
- All students who take CFCS.
- Properties of a word:
 - Frequency in some large file.
 - Length in characters.

Vectors allow us to package data together.

- Background
- 2 Operations

Miles Osborne

CFCS1

Background Operations

Notation

- Vectors have a variety of representations:
 - Row: $\begin{bmatrix} a & b & c \end{bmatrix}$ Column: $\begin{bmatrix} a & b & c \end{bmatrix}$
- These are mathematically equivalent to each other.
- Conventionally, vectors are written with a **bold font**: **a**.
- Ordinary numbers (scalars) are written in a usual font: 10.

Miles Osborne

CFCS1

1

Miles Osborne

CFCS1

Word Frequencies

The 10 cat 6 laughed 2

Vector representation: [10, 6, 2]

Notice each vector element has the same type:

Background

- They are all integers.
- They all have the same semantics.

We can define operations over vectors which apply to all elements.

Miles Osborne CFCS1

Miles Osborne

Background Operations

CFCS1

Background Operations

Motivation

Motivation

Word Properties

Consider the word *the*:

Frequency 10 Length 3

Vector representation: [10, 3]

Now, our elements do not have the same semantics as each other:

- They are still all integers.
- The meaning of the first element is not the same as the second element.

We must now be careful when manipulating such vectors.

Miles Osborne

Miles Osborne

Arrows and Co-ordinates

Vectors can be seen in terms of arrows or co-ordinates:

Miles Osborne

CFCS1

q

Background Operations

Operations: Addition

N-Space

If all components of our vectors are real numbers, then we have an n-space:

- For n = 1, we describe a line (R^1)
- For n = 2, we describe a plane (R^2) .
- For n = 3, we describe a normal space (R^3) .

Components of an n-space yield subspaces.

Miles Osborne

CFCS1

10

Background Operations

Operations: Addition

Addition

$$[1\ 2] + [1\ 3] = [2\ 5]$$

$$[1 \ 2] + [0 \ 0] = [1 \ 2]$$

$$[1\ 2] + [1] = ?$$

Miles Osborne CFCS1 11 Miles Osborne CFCS1 CFCS1

Background Operations

Operations: Subtraction

Miles Osborne

CFCS1

13

Background Operations

Operations: Scalar Multiplication

Multiplying a vector by a scalar yields another vector:

Scalar Multiplication

$$[1\ 2].2 = [2\ 4]$$

$$[1\ 2].1 = [1\ 2]$$

$$[1 \ 2]. - 1 = [-1 \ -2]$$

$$[1\ 2].0 = [0\ 0]$$

Backgrou

Operations: Subtraction

Subtraction

$$[1 \ 2] - [1 \ 3] = [0 \ -1]$$

 $[1 \ 2] - [0 \ 0] = [1 \ 2]$
 $[1 \ 2] - [1] = ?$

A vector with negative values has an opposite direction to the corresponding vector with positive values.

Miles Osborne

CFCS

Background Operations

Vectors Properties

The following identities can be useful:

$$u + v = v + u$$

$$(u + v) + w = u + (v + w)$$

$$v + 0 = 0 + v = v$$

$$v + (-v) = 0$$

$$(k + l)v = kv + lv$$

$$k(u + v) = ku + kv$$

$$k(lv) = (kl)v$$

$$1v = v$$

Miles Osborne CFCS1 15

Miles Osborne CFCS1

Summary

- Vectors are useful objects for grouping and manipulating data.
- Care needs to be taken that vector operations are meaningful, given the semantics of the components.
- Background reading: Anton and Busby: section 1.1

Mil	Os	