

Miles Osborne
School of Informatics University of Edinburgh miles@inf.ed.ac.uk

January 13, 2009Background
(2) Operations

Background

Motivation

Notation	$\substack{\text { Backergind } \\ \text { Operations }}$

We often want to group together data:

- Measurements of an experiment.
- All students who take CFCS.
- Properties of a word:
- Frequency in some large file.
- Length in characters.

Vectors allow us to package data together.

- Vectors have a variety of representations: - Row: $\left[\begin{array}{lll}a & b & c\end{array}\right]$ Column: $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$
- These are mathematically equivalent to each other.
- Conventionally, vectors are written with a bold font: a.
- Ordinary numbers (scalars) are written in a usual font: 10.

| Word Frequencies | |
| :--- | :--- | :--- |
| The | 10 |
| cat | 6 |
| laughed | 2 |

Notice each vector element has the same type:

- They are all integers.
- They all have the same semantics.

We can define operations over vectors which apply to all elements.

Motivation | Background |
| :---: |
| Operations |

Word Properties		
Consider the word the:		
	Frequency Length	10

Vector representation: [10, 3]
Now, our elements do not have the same semantics as each other:

- They are still all integers.
- The meaning of the first element is not the same as the second element.
We must now be careful when manipulating such vectors.

Vectors can be seen in terms of arrows or co-ordinates:

If all components of our vectors are real numbers, then we have an n-space:

- For $n=1$, we describe a line $\left(R^{1}\right)$
- For $n=2$, we describe a plane $\left(R^{2}\right)$.
- For $n=3$, we describe a normal space $\left(R^{3}\right)$.

Components of an n -space yield subspaces.

Background Operations

Operations: Addition

Background Operations

Operations: Addition

Addition
$\qquad$$\left[\begin{array}{ll}1 & 2\end{array}\right]+\left[\begin{array}{ll}1 & 3\end{array}\right]=\left[\begin{array}{ll}2 & 5\end{array}\right]$ $\left[\begin{array}{ll}1 & 2\end{array}\right]+\left[\begin{array}{ll}0 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 2\end{array}\right]$ $\left[\begin{array}{ll}1 & 2\end{array}\right]+\left[\begin{array}{ll}1\end{array}\right]=?$

$$
\begin{gathered}
\text { Background } \\
\text { Operations }
\end{gathered}
$$

Operations: Scalar Multiplication

Multiplying a vector by a scalar yields another vector:
Scalar Multiplication
$\left[\begin{array}{ll}1 & 2\end{array}\right] .2=\left[\begin{array}{ll}2 & 4\end{array}\right]$
[1 2]. $1=\left[\begin{array}{ll}1 & 2\end{array}\right]$
[12]. $-1=\left[\begin{array}{ll}-1 & -2\end{array}\right]$
$\left[\begin{array}{ll}12]\end{array}\right]=\left[\begin{array}{ll}0 & 0\end{array}\right]$

Subtraction

$$
\begin{array}{r}
{\left[\begin{array}{l}
12]-\left[\begin{array}{ll}
1 & 3
\end{array}\right]=\left[\begin{array}{lll}
0 & -1
\end{array}\right] \\
{\left[\begin{array}{rl}
1 & 2
\end{array}\right]-\left[\begin{array}{lll}
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 2
\end{array}\right]} \\
{\left[\begin{array}{ll}
1 & 2
\end{array}\right]-\left[\begin{array}{ll}
1]
\end{array}\right]}
\end{array} .\right.}
\end{array}
$$

A vector with negative values has an opposite direction to the corresponding vector with positive values.

The following identities can be useful:

$$
\begin{array}{r}
\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u} \\
(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w}) \\
\mathbf{v}+\mathbf{0}=\mathbf{0}+\mathbf{v}=\mathbf{v} \\
\mathbf{v}+(-\mathbf{v})=\mathbf{0} \\
(k+l) \mathbf{v}=k \mathbf{v}+/ \mathbf{v} \\
k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v} \\
k(/ \mathbf{v})=(k l) \mathbf{v} \\
1 \mathbf{v}=\mathbf{v}
\end{array}
$$

- Vectors are useful objects for grouping and manipulating data.
- Care needs to be taken that vector operations are meaningful, given the semantics of the components.
- Background reading: Anton and Busby: section 1.1

