CFCS1
 Vectors in MATLAB

Miles Osborne

School of Informatics
University of Edinburgh
miles@inf.ed.ac.uk
February 22, 2010
(1) Basics
(2) Linear Algebra Operations
(3) Useful Operations
(4) Quiz
(5) Vectorising

Overview

A MATLAB vector is a one-dimensional array of the same type:
Vector Examples

$$
\left.\begin{array}{ll}
{\left[\begin{array}{ll}
3 & 9
\end{array}\right.} & 6
\end{array}\right] \quad \text { Three integer elements } \quad\left[\begin{array}{ll}
\text { [] } & \text { No elements } \\
{\left[\begin{array}{ll}
1.2 & 0.3
\end{array}\right]} & \text { Two real number elements }
\end{array}\right.
$$

(There are no differences between vectors and matrices, apart from the dimensions)

Overview

Vectors are created either as a by-product of some operation or directly:

Vector Creation

$$
\begin{aligned}
& \mathbf{a}=\left[\begin{array}{lll}
3 & 9 & 6
\end{array}\right] \quad \text { \%Creates a vector called } \mathbf{a} \\
& \mathbf{b}=\mathbf{a}^{*} \mathbf{3} \\
& \% \text { Creates a new vector }
\end{aligned}
$$

Note that there is no need to specify the size of the vector.

Overview

Individual components are accessed using indexing:
Vector Creation

$$
\begin{array}{ll}
\mathbf{a}=\left[\begin{array}{lll}
3 & 9 & 6
\end{array}\right] & \text { \%Creates a vector called } \mathbf{a} \\
\mathbf{c}=\mathbf{a}(\mathbf{1}) & \% \text { Select the first element }
\end{array}
$$

- Round-brackets are used to specify an entry.
- Indexing starts from 1 (not zero).

Overview

Sequence components are specified using the colon notation:
Vector Creation

$$
\left.\begin{array}{ll}
\mathbf{a}=\left[\begin{array}{lll}
3 & 9 & 6
\end{array}\right] & \% \text { Creates a vector called } \mathbf{a} \\
\mathbf{c}=\mathbf{a}(1: 2) & \% \text { Create the vector }[39
\end{array}\right]
$$

Overview

Items can be directly replaced:

Vector Creation

$$
\begin{array}{ll}
\mathbf{a}=\left[\begin{array}{lll}
3 & 9 & 6
\end{array}\right] & \% \text { Creates a vector called } \mathbf{a} \\
\mathbf{a (2)}=\mathbf{8} & \% \text { Create the vector }\left[\begin{array}{lll}
3 & 8 & 6
\end{array}\right] \\
\mathbf{a (5)}=\mathbf{1} & \% \text { Create the longer vector }\left[\begin{array}{llll}
3 & 8 & 6 & 0
\end{array}\right]
\end{array}
$$

Note: implied entries are set to zero.

Linear Algebra Operations

MATLAB directly supports common operations:

Linear Algebra Examples

```
norm(a)
dot(a, b)
a * 4
a-b
a+b
a / norm(a)
dot(\mathbf{a,b})/(\operatorname{norm}(\mathbf{a})*\operatorname{norm(b))}
```

\% Find the norm (length) of a
\% Dot product of \mathbf{a} and \mathbf{b}
\% Scalar multiplication
\% Vector subtraction
\% Vector addition
\% Create a unit vector
\% Cosine angle

Useful Operations

MATLAB has a library with many common operations:

Useful Operations

$$
\begin{array}{ll}
\operatorname{sum}(\mathbf{a}) & \sum_{i=1}^{n} a_{i} \\
\operatorname{prod}(\mathbf{a}) & \prod_{i=1}^{n} a_{i} \\
\operatorname{sort}(\mathbf{a}) & \text { \% Sort the vector } \\
\max (\mathbf{a}) & \text { \% Find the largest element } \\
\min (\mathbf{a}) & \text { \% Find the smallest element } \\
\text { length(a) } & \text { \%How many elements in the vector }
\end{array}
$$

In general, before writing some code, see if MATLAB already supports it!

Quiz

A stack is a data structure supporting the following operations:

- Push: add an element to a list (eg push $(a,(b c))=(a b c))$.
- Pop: remove the first element from the list $(\operatorname{eg} \operatorname{pop}((a b c))=$ (b c))
How can MATLAB implement these operations?

Vectorising

- MATLAB is a general-purpose programming language
- It also has efficient support for common operations over vectors.
- Vectorising means using these operations in place of explicit control constructs.

Vectorising : An Example

- Logical indexing uses a vector to specify whether a corresponding component in another vector should be extracted.
- A one in that vector means extract the corresponding element (and a zero means ignore it).

Logical Indexing

$$
\begin{aligned}
& \mathbf{a}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \\
& \mathbf{b}=\left[\begin{array}{lll}
0 & 1 & 1
\end{array}\right] \\
& \mathbf{a}(\operatorname{logical}(\mathbf{b}))=\left[\begin{array}{ll}
2 & 3
\end{array}\right]
\end{aligned}
$$

Vectorising : Another example

- The operation $>$ tests whether each element in a vector is greater than some number.
- Likewise, the operation < tests whether each element in a vector is less than some number.
- How can we use vectorising to remove numbers which fall outside of some range?

Trimming bad values

$$
\begin{aligned}
& \mathbf{a}=\left[\begin{array}{lllll}
-999 & 2 & 3 & 3 & 999
\end{array}\right] \\
& \mathbf{b}=a>0 \& a< \\
& \mathbf{a}(\text { logical }(\mathbf{b}))=\left[\begin{array}{lll}
2 & 3 & 3
\end{array}\right]
\end{aligned}
$$

Vectorising : Another example

- The operation $==$ tests whether each element in a vector is equal to some number.
- How can we use vectorising to count the number of components that are equal to some number?

Trimming bad values

$$
\begin{aligned}
& \mathbf{a}=\left[\begin{array}{llllll}
-999 & 2 & 3 & 3 & 999
\end{array}\right] \\
& \operatorname{sum}((\mathbf{a}==3))=2
\end{aligned}
$$

Note: this does not use logical indexing, we simply count the number of true elements in the logical vector.

Summary

- Vectors in MATLAB are first-class types.
- There are a rich variety of operations over them.
- Vectorising is a technique for writing faster, more compact programs.

