CFCS1

Vectors in MATLAB

Miles Osborne

School of Informatics University of Edinburgh miles@inf.ed.ac.uk

January 17, 2008

Miles Osborne

CFCS1

Linear Algebra Operations
Useful Operations Quiz Vectorising

Overview

A MATLAB vector is a one-dimensional array of the same type:

Vector Examples [3 9 6] Three integer elements No elements [1.2 0.3] Two real number elements

(There are no differences between vectors and matrices, apart from the dimensions)

Basics

2 Linear Algebra Operations

Useful Operations

4 Quiz

Vectorising

Miles Osborne

CFCS1

Linear Algebra Operations Useful Operations

Overview

Vectors are created either as a by-product of some operation or directly:

Vector Creation

a = [3 9 6] %Creates a vector called a

b = **a** * **3** %Creates a new vector

Note that there is no need to specify the size of the vector.

Miles Osborne CFCS1 Miles Osborne CFCS1

Overview

Basics
Linear Algebra Operations
Useful Operations
Quiz
Vectorising

Overview

Individual components are accessed using indexing:

Vector Creation

 $\mathbf{a} = \begin{bmatrix} 3 \ 9 \ 6 \end{bmatrix}$ %Creates a vector called \mathbf{a} $\mathbf{c} = \mathbf{a}(\mathbf{1})$ % Select the first element

- Round-brackets are used to specify an entry.
- Indexing starts from 1 (not zero).

Miles Osborne CFCS1

Basics
Linear Algebra Operations
Useful Operations
Quiz
Vectorising

Overview

Items can be directly replaced:

Vector Creation

Note: implied entries are set to zero.

Sequence components are specified using the colon notation:

Vector Creation

 $\mathbf{a} = \begin{bmatrix} 3 \ 9 \ 6 \end{bmatrix}$ %Creates a vector called \mathbf{a} $\mathbf{c} = \mathbf{a}(1:2)$ % Create the vector $\begin{bmatrix} 3 \ 9 \end{bmatrix}$

Miles Osborne

CFCS1

Basics Linear Algebra Operations Useful Operations Quiz

Linear Algebra Operations

MATLAB directly supports common operations:

Linear Algebra Examples

norm(a) dot(a, b) a * 4 a - b a + b a / norm(a) dot(a,b) / (norm(a) * norm(b))

% Find the norm (length) of a

% Dot product of **a** and **b** % Scalar multiplication

% Vector subtraction % Vector addition

% Create a unit vector

% Cosine angle

Miles Osborne

CFCS1

Miles Osborne

CFCS1

8

Useful Operations

MATLAB has a library with many common operations:

Useful Operations

 $\sum_{i=1}^{n} a_i$ $\prod_{i=1}^{n} a_i$ sum(a) prod(a) % Sort the vector sort(a) % Find the largest element max(a)% Find the smallest element min(a)length(a) %How many elements in the vector

In general, before writing some code, see if MATLAB already supports it!

Miles Osborne

CFCS1

Linear Algebra Operations
Useful Operations

Vectorising

- MATLAB is a general-purpose programming language
- It also has efficient support for common operations over vectors.
- Vectorising means using these operations in place of explicit control constructs.

A *stack* is a data structure supporting the following operations:

- Push: add an element to a list (eg push(a,(b c)) = (a b c)).
- Pop: remove the first element from the list (eg pop((a b c)) = (b c))

How can MATLAB implement these operations?

Miles Osborne

CFCS1

Linear Algebra Operations
Useful Operations

Vectorising: An Example

- Logical indexing uses a vector to specify whether a corresponding component in another vector should be extracted.
- A one in that vector means extract the corresponding element (and a zero means ignore it).

Logical Indexing

$$a = [1 \ 2 \ 3]$$

$$\mathbf{b} = [0 \ 1 \ 1]$$

Miles Osborne

$$a(logical(b)) = [2 3]$$

Miles Osborne CFCS1

Linear Algebra Operations
Useful Operations

Vectorising: Another example

- The operation > tests whether each element in a vector is greater than some number.
- Likewise, the operation < tests whether each element in a vector is less than some number.
- How can we use vectorising to remove numbers which fall outside of some range?

Trimming bad values

 $\mathbf{a} = [-999 \ 2 \ 3 \ 3 \ 999]$

 $\mathbf{b} = a > 0 \& a < 5$

a(logical(b)) = [2 3 3]

Miles Osborne

CFCS1

Linear Algebra Operations Useful Operations

Summary

- Vectors in MATLAB are first-class types.
- There are a rich variety of operations over them.
- Vectorising is a technique for writing faster, more compact programs.

Miles Osborne

CFCS1

Linear Algebra Operations
Useful Operations

Vectorising: Another example

- The operation == tests whether each element in a vector is equal to some number.
- How can we use vectorising to count the number of components that are equal to some number?

Trimming bad values

$$\mathbf{a} = [-999 \ 2 \ 3 \ 3 \ 999]$$

sum(($\mathbf{a} == 3$)) = 2

Note: this does not use logical indexing, we simply count the number of true elements in the logical vector.

Miles Osborne

CFCS1